Skip to main content

Random Sampling in Bounded Orthonormal Systems

  • Chapter
  • First Online:
A Mathematical Introduction to Compressive Sensing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter considers the recovery of signals with a sparse expansion in a bounded orthonormal system. After an inventory of such bounded orthonormal systems including the Fourier systems, theoretical limitations specific to this situation are obtained for the minimal number of samples. Then, using this number of random samples, nonuniform sparse recovery is proved to be possible via ℓ1-minimization. Next, using a slightly higher number of random samples, uniform sparse recovery is also proved to be possible via a variety of algorithms. This is derived via establishing the restricted isometry property for the associated random sampling matrix—the random partial Fourier matrix is a particular case. Finally, a connection to the Λ 1-problem is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Abrial, Y. Moudden, J.-L. Starck, J. Fadili, J. Delabrouille, M. Nguyen, CMB data analysis and sparsity. Stat. Meth. 5, 289–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Ailon, B. Chazelle, The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Ailon, E. Liberty, Fast dimension reduction using Rademacher series on dual BCH codes. Discrete Comput. Geom. 42(4), 615–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Ailon, E. Liberty, Almost optimal unrestricted fast Johnson-Lindenstrauss transform. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, USA, 22–25 January 2011

    Google Scholar 

  5. N. Ailon, H. Rauhut, Fast and RIP-optimal transforms. Preprint (2013)

    Google Scholar 

  6. G. Andrews, R. Askey, R. Roy, in Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  7. W. Bajwa, J. Haupt, G. Raz, S. Wright, R. Nowak, Toeplitz-structured compressed sensing matrices. In Proc. IEEE Stat. Sig. Proc. Workshop, pp. 294–298, 2007

    Google Scholar 

  8. J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem. Acta Math. 162(3–4), 227–245 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, \(\Lambda _{p}\)-sets in analysis: results, problems and related aspects. In Handbook of the Geometry of Banach Spaces, vol. 1, ed. by W. B. Johnson, J. Lindenstrauss (North-Holland, Amsterdam, 2001), pp. 195–232

    Google Scholar 

  10. N. Burq, S. Dyatlov, R. Ward, M. Zworski, Weighted eigenfunction estimates with applications to compressed sensing. SIAM J. Math. Anal. 44(5), 3481–3501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. E.J. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inform. Theor. 57(11), 7235–7254 (2011)

    Article  Google Scholar 

  12. E.J. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. E.J. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969–985 (2007)

    Article  MATH  Google Scholar 

  14. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theor. 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  15. E.J. Candès, T. Tao, Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theor. 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  16. D. Chafaï, O. Guédon, G. Lecué, A. Pajor, Interactions Between Compressed Sensing, Random Matrices and High-dimensional Geometry, Panoramas et Synthèses, vol. 37 (Société Mathématique de France, to appear)

    Google Scholar 

  17. M. Cheraghchi, V. Guruswami, A. Velingker, Restricted isometry of Fourier matrices and list decodability of random linear codes. Preprint (2012)

    Google Scholar 

  18. T. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach Science Publishers, New York 1978)

    MATH  Google Scholar 

  19. O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2003)

    MATH  Google Scholar 

  20. A. Cohen, Numerical Analysis of Wavelet Methods (North-Holland, Amsterdam, 2003)

    MATH  Google Scholar 

  21. R. Coifman, F. Geshwind, Y. Meyer, Noiselets. Appl. Comput. Harmon. Anal. 10(1), 27–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (SIAM, Philadelphia, 1992)

    Google Scholar 

  23. D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decompositions. IEEE Trans. Inform. Theor. 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.L. Donoho, P. Stark, Uncertainty principles and signal recovery. SIAM J. Appl. Math. 48(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  25. M. Elad, A.M. Bruckstein, A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theor. 48(9), 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. H.G. Feichtinger, F. Luef, T. Werther, A guided tour from linear algebra to the foundations of Gabor analysis. In Gabor and Wavelet Frames. Lecture Notes Series, Institute for Mathematical Sciences National University of Singapore, vol. 10 (World Sci. Publ., Hackensack, 2007), pp. 1–49

    Google Scholar 

  27. H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications (Birkhäuser, Boston, 1998)

    Book  MATH  Google Scholar 

  28. G.B. Folland, Fourier Analysis and Its Applications (Wadsworth and Brooks, Pacific Grove, 1992)

    MATH  Google Scholar 

  29. G.B. Folland, A Course in Abstract Harmonic Analysis (CRC Press, Boca Raton, 1995)

    MATH  Google Scholar 

  30. G.B. Folland, A. Sitaram, The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. A.C. Gilbert, S. Muthukrishnan, S. Guha, P. Indyk, M. Strauss, Near-Optimal Sparse Fourier Representations via Sampling. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pp. 152–161, ACM, New York, NY, USA, 2002

    Google Scholar 

  32. G. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, MD, 1996)

    MATH  Google Scholar 

  33. L. Grafakos, Modern Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 250 (Springer, New York, 2009)

    Google Scholar 

  34. K. Gröchenig, Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2001)

    Google Scholar 

  35. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theor. 57(3), 1548–1566 (2011)

    Article  Google Scholar 

  36. O. Guédon, S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Majorizing measures and proportional subsets of bounded orthonormal systems. Rev. Mat. Iberoam. 24(3), 1075–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Hassanieh, P. Indyk, D. Katabi, E. Price, Nearly optimal sparse Fourier transform. In Proceedings of the 44th Symposium on Theory of Computing, STOC ’12, pp. 563–578, ACM, New York, NY, USA, 2012

    Google Scholar 

  38. J. Haupt, W. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theor. 56(11), 5862–5875 (2010)

    Article  MathSciNet  Google Scholar 

  39. D. Healy Jr., D. Rockmore, P. Kostelec, S. Moore, FFTs for the 2-Sphere—Improvements and Variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Herman, T. Strohmer, High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  Google Scholar 

  41. A. Hinrichs, J. Vybiral, Johnson-Lindenstrauss lemma for circulant matrices. Random Struct. Algorithm. 39(3), 391–398 (2011)

    MathSciNet  MATH  Google Scholar 

  42. M. Hügel, H. Rauhut, T. Strohmer, Remote sensing via 1-minimization. Found. Comput. Math., to appear. (2012)

    Google Scholar 

  43. M. Iwen, Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Iwen, Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Iwen, A. Gilbert, M. Strauss, Empirical evaluation of a sub-linear time sparse DFT algorithm. Commun. Math. Sci. 5(4), 981–998 (2007)

    MathSciNet  MATH  Google Scholar 

  46. R. James, M. Dennis, N. Daniel, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26(4), 1066–1099 (1997)

    Article  MathSciNet  Google Scholar 

  47. F. Krahmer, S. Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math. (to appear)

    Google Scholar 

  48. F. Krahmer, G.E. Pfander, P. Rashkov, Uncertainty principles for time–frequency representations on finite abelian groups. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. F. Krahmer, R. Ward, New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Krahmer, R. Ward, Beyond incoherence: stable and robust sampling strategies for compressive imaging. Preprint (2012)

    Google Scholar 

  51. I. Krasikov, On the Erdelyi-Magnus-Nevai conjecture for Jacobi polynomials. Constr. Approx. 28(2), 113–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Kuppinger, G. Durisi, H. Bölcskei, Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inform. Theor. 58(1), 263–277 (2012)

    Article  Google Scholar 

  53. J. Lawrence, G.E. Pfander, D. Walnut, Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Mallat, A Wavelet Tour of Signal Processing. Middleton Academic Press, San Diego, 1998

    MATH  Google Scholar 

  55. D. Middleton, Channel Modeling and Threshold Signal Processing in Underwater Acoustics: An Analytical Overview. IEEE J. Oceanic Eng. 12(1), 4–28 (1987)

    Article  MathSciNet  Google Scholar 

  56. G. Pfander, H. Rauhut, J. Tanner, Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008)

    Article  MathSciNet  Google Scholar 

  57. G. Pfander, H. Rauhut, J. Tropp, The restricted isometry property for time-frequency structured random matrices. Prob. Theor. Relat. Field. to appear

    Google Scholar 

  58. M. Pinsky, Introduction to Fourier Analysis and Wavelets. Graduate Studies in Mathematics, vol. 102 (American Mathematical Society, Providence, RI, 2009)

    Google Scholar 

  59. D. Potts, Fast algorithms for discrete polynomial transforms on arbitrary grids. Lin. Algebra Appl. 366, 353–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comp. 67, 1577–1590 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Potts, G. Steidl, M. Tasche, Fast fourier transforms for nonequispaced data: a tutorial. In Modern Sampling Theory: Mathematics and Applications ed. by J. Benedetto, P. Ferreira, Chap. 12 (Birkhäuser, Boston, 2001), pp. 247–270

    Google Scholar 

  62. H. Rauhut, Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Rauhut, On the impossibility of uniform sparse reconstruction using greedy methods. Sampl. Theor. Signal Image Process. 7(2), 197–215 (2008)

    MathSciNet  MATH  Google Scholar 

  64. H. Rauhut, Circulant and Toeplitz matrices in compressed sensing. In Proc. SPARS’09 (Saint-Malo, France, 2009)

    Google Scholar 

  65. H. Rauhut, Compressive sensing and structured random matrices. In Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series on Computational and Applied Mathematics, vol. 9 (de Gruyter, Berlin, 2010), pp. 1–92

    Google Scholar 

  66. H. Rauhut, G.E. Pfander, Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. H. Rauhut, J.K. Romberg, J.A. Tropp, Restricted isometries for partial random circulant matrices. Appl. Comput. Harmon. Anal. 32(2), 242–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. H. Rauhut, R. Ward, Sparse recovery for spherical harmonic expansions. In Proc. SampTA 2011, Singapore, 2011

    Google Scholar 

  69. H. Rauhut, R. Ward, Sparse Legendre expansions via 1-minimization. J. Approx. Theor. 164(5), 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. B. Recht, A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)

    MathSciNet  Google Scholar 

  71. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math. 61, 1025–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. W. Rudin, Fourier Analysis on Groups (Interscience Publishers, New York, 1962)

    MATH  Google Scholar 

  73. I. Segal, M. Iwen, Improved sparse Fourier approximation results: Faster implementations and stronger guarantees. Numer. Algorithm. 63(2), 239–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  74. E.M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis. Princeton Lectures in Analysis, vol. 4 (Princeton University Press, Princeton, NJ, 2011)

    Google Scholar 

  75. M. Stojanovic, Underwater Acoustic Communications. In Encyclopedia of Electrical and Electronics Engineering, vol. 22, ed. by M. Stojanovic, J. G. Webster (Wiley, New York, 1999), pp. 688–698

    Google Scholar 

  76. G. Szegő, Orthogonal Polynomials, 4th edn. (American Mathematical Society, Providence, 1975)

    Google Scholar 

  77. M. Talagrand, Selecting a proportion of characters. Israel J. Math. 108, 173–191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  78. J.A. Tropp, On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans. Inform. Theor. 56(1), 520–544 (2010)

    Article  MathSciNet  Google Scholar 

  80. J.A. Tropp, M. Wakin, M. Duarte, D. Baron, R. Baraniuk, Random filters for compressive sampling and reconstruction. Proc. 2006 IEEE International Conference Acoustics, Speech, and Signal Processing, vol. 3, pp. 872–875, 2006

    Google Scholar 

  81. M. Tygert, Fast algorithms for spherical harmonic expansions, II. J. Comput. Phys. 227(8), 4260–4279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. J. Vybiral, A variant of the Johnson-Lindenstrauss lemma for circulant matrices. J. Funct. Anal. 260(4), 1096–1105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. J. Walker, Fourier analysis and wavelet analysis. Notices Am. Math. Soc. 44(6), 658–670 (1997)

    MATH  Google Scholar 

  84. P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  85. J. Zou, A.C. Gilbert, M. Strauss, I. Daubechies, Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis. J. Comput. Phys. 211, 572–595 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foucart, S., Rauhut, H. (2013). Random Sampling in Bounded Orthonormal Systems. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4948-7_12

Download citation

Publish with us

Policies and ethics