Skip to main content

Gelfand Widths of ℓ1-Balls

  • Chapter
  • First Online:
A Mathematical Introduction to Compressive Sensing

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 14k Accesses

Abstract

This chapter makes a detour to the geometry of Banach spaces. First, it highlights a strong connection between compressive sensing and Gelfand widths, with implications on the minimal number of measurements needed for stable sparse recovery with an arbitrary measurement matrix. Then two-sided estimates for the Gelfand widths of 1-balls are established, as well as two-sided estimates for Kolmogorov widths. Finally, compressive sensing techniques are applied to give a proof of Kashin’s decomposition theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Buhrman, P. Miltersen, J. Radhakrishnan, S. Venkatesh, Are bitvectors optimal? In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing STOC ’00:, pp. 449–458, ACM, New York, NY, USA, 2000

    Google Scholar 

  2. A. Cohen, W. Dahmen, R.A. DeVore, Compressed sensing and best k-term approximation. J. Amer. Math. Soc. 22(1), 211–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  4. S. Foucart, A. Pajor, H. Rauhut, T. Ullrich, The Gelfand widths of p -balls for \(0 < p \leq 1\). J. Complex. 26(6), 629–640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Garnaev, E. Gluskin, On widths of the Euclidean ball. Sov. Math. Dokl. 30, 200–204 (1984)

    MATH  Google Scholar 

  6. R. Graham, N. Sloane, Lower bounds for constant weight codes. IEEE Trans. Inform. Theor. 26(1), 37–43 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Kashin, Diameters of some finite-dimensional sets and classes of smooth functions. Math. USSR, Izv. 11, 317–333 (1977)

    Google Scholar 

  8. B.S. Kashin, V.N. Temlyakov, A remark on compressed sensing. Math. Notes 82(5), 748–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Lorentz, M. von Golitschek, Y. Makovoz, Constructive Approximation: Advanced Problems (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  10. S. Mendelson, A. Pajor, M. Rudelson, The geometry of random { − 1, 1}-polytopes. Discr. Comput. Geom. 34(3), 365–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Noam, W. Avi, Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)

    Article  MATH  Google Scholar 

  12. E. Novak, Optimal recovery and n-widths for convex classes of functions. J. Approx. Theor. 80(3), 390–408 (1995)

    Article  MATH  Google Scholar 

  13. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Vol. 1: Linear Information. EMS Tracts in Mathematics, vol. 6 (European Mathematical Society (EMS), Zürich, 2008)

    Google Scholar 

  14. A. Pinkus, n-Widths in Approximation Theory (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  15. G. Schechtman, Special orthogonal splittings of L 1 2k. Israel J. Math. 139, 337–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Szarek, On Kashin’s almost Euclidean orthogonal decomposition of l n 1. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26(8), 691–694 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foucart, S., Rauhut, H. (2013). Gelfand Widths of ℓ1-Balls. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4948-7_10

Download citation

Publish with us

Policies and ethics