Advertisement

Mathematics and physics applications in sociodynamics simulation: the case of opinion formation and diffusion

  • Giacomo Aletti
  • Ahmad K. Naimzada
  • Giovanni Naldi
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

In this chapter, we briefly review some opinion dynamics models starting from the classical Schelling model and other agent-based modelling examples. We consider both discrete and continuous models and we briefly describe different approaches: discrete dynamical systems and agent-based models, partial differential equations based models, kinetic framework. We also synthesized some comparisons between different methods with the main references in order to further analysis and remarks.

Keywords

Ising Model Opinion Formation Discrete Dynamical System Opinion Dynamic Ethnic Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press, Cambridge, MA (1996)Google Scholar
  2. 2.
    Axelrod, R.: The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton University Press, Princeton, NJ (1997)Google Scholar
  3. 3.
    Couzin, I.D., Krause, J., Franks, N.R., Levin, S.: Effective leadership and decision making in animal groups on the move. Nature, 433, 513–516 (2005)CrossRefGoogle Scholar
  4. 4.
    Cucker, F., Mordecki, E.: Flocking in noisy environments. J. Math. Pures Appl., 89, 278–296 (2008)MATHMathSciNetGoogle Scholar
  5. 5.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control, 52, 852–862 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Flierl, G., Grnbaum, D., Levin, D., Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol., 196, 397–454 (1999)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Passino, K.: Stable social foraging swarms in a noisy environment. IEEE Trans. Automatic Contrl., 49, 30–44 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math., 65, 152–174 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68, 1601–1623 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts. Eur. Phys. J. Special Topics, 157, 93–109 (2008)CrossRefGoogle Scholar
  11. 11.
    Shen, J.: Cucker-smale flocking under hierarchical leadership. SIAM J. Appl. Math., 68, 694–719 (2008)MATHCrossRefGoogle Scholar
  12. 12.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contrl., 48, 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Biham, O., Malcai, O., Richmond, P., Solomon S.: Theoretical analysis and simulations of the generalized Lotka-Volterra model. Phys. Rev. E, 66, 031102 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Solomon, S., Richmond, P.: Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf. Eur. Phys. J. B, 27, 257–262 (2002)Google Scholar
  15. 15.
    Dragulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B, 17, 723–729 (2000)CrossRefGoogle Scholar
  16. 16.
    Chakraborti, A., Chakrabarti, B.K.: Statistical Mechanics of money: effects of saving propensity. Eur. Phys. J. B, 17, 167–170 (2000)CrossRefGoogle Scholar
  17. 17.
    Chakraborti, A.: Distributions of money in models of market economy. Int. J. Modern Phys. C, 13, 1315–1321 (2002)CrossRefGoogle Scholar
  18. 18.
    Galam, S., Gefen, Y., Shapir, Y.: Sociophysics:a new approach of sociological collective behavior. J. Math. Sociol., 9, 1–13 (1982)MATHGoogle Scholar
  19. 19.
    Stauffer, D., de Oliveira, P.M.C.: Persistence of opinion in the Sznajd consensus model: computer simulation. Eur. Phys. J. B, 30, 587–592 (2002)CrossRefGoogle Scholar
  20. 20.
    Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C, 11, 1157–1165 (2000)CrossRefGoogle Scholar
  21. 21.
    Weisbuch, G., Deffuant, G., Amblard, F., Nadal, J.P.: Meet, discuss, and segregate. Complexity, 7, 55–63 (2002)CrossRefGoogle Scholar
  22. 22.
    Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math., 2, 197–227 (2007)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Cucker, F., Smale, S., Zhou, D.X.: Modeling language evolution. Found. Comput. Math., 4, 315–343 (2004)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Majorana, E., 1942, Scientia Feb–Mar, 58Google Scholar
  25. 25.
    Mantegna, R.N.: Presentation of the English translation of Ettore Majoranas paper: “The value of statistical laws in physics and social science”. Quantitative Finance, 5, 133 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Harwood Academic, Amsterdam (2000)MATHGoogle Scholar
  27. 27.
    Schelling, T. C.: Dynamic models of segregation. J. Math. Sociol., 1, 143–186 (1971)Google Scholar
  28. 28.
    Sakoda, J.M.: The checkerboard model of social interaction. J. Math. Sociol., 1, 119–132 (1971)Google Scholar
  29. 29.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschr f. Physik, 31, 253–258 (1925)CrossRefGoogle Scholar
  30. 30.
    Brush, S.G., History of the Lenz-Ising Model. Rev. Modern Phys.,39, 883-893 (1967)CrossRefGoogle Scholar
  31. 31.
    McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge Massachusetts (1973)MATHGoogle Scholar
  32. 32.
    Godreche, C., Luck, J.M.: Metastability in zero-temperature dynamics: Statistics of attractors. J. Phys. Cond. Matt., 17, S2573–S2590 (2005)CrossRefGoogle Scholar
  33. 33.
    Galam, S.: Sociophysics: a personal testimony. Physica A, 336, 49–55 (2004)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Arnopoulos, P.: Sociophysics: Cosmos and Chaos in Nature and Culture. Nova Science Publishers, New York (2005)Google Scholar
  35. 35.
    Schweitzer, F.: Browning Agents and Active Particles. On the emergence of complex behavior in the natural and social sciences. Springer, Berlin (2003)Google Scholar
  36. 36.
    Schweitzer, F. (ed): Modeling Complexity in Economic and Social Systems, World Scientific. River Edge, NJ (2002)CrossRefGoogle Scholar
  37. 37.
    Chakrabarti, B.K., Chakraborti, A., Chatterjee, A. (eds): Econophysics and Sociophysics. Wiley, Berlin (2006)CrossRefGoogle Scholar
  38. 38.
    Meyers, R.A. (ed): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)CrossRefGoogle Scholar
  39. 39.
    Vinkovic, D., Kirman, A.: A physical analogue of the Schelling model. PNAS, 103(51), 19261–19265 (2006)CrossRefGoogle Scholar
  40. 40.
    DallAsta, L., Castellano, C., Marsili, M.: Statistical physics of the Schelling model of segregation. eprint arXiv:0707.1681 (2007)Google Scholar
  41. 41.
    Fossett, M.: Ethnic preferences, social distance dynamics, and residential segregation: theoretical explorations using simulation analysis. J. Math. Sociol., 30, 185–274 (2006)CrossRefGoogle Scholar
  42. 42.
    Clarkab, W.A.V., Fossett, M.: Understanding the social context of the Schelling segregation model. PNAS, 5(11), 4109–4114 (2008)CrossRefGoogle Scholar
  43. 43.
    Stauffer, D., Solomon, S.: Ising, Schelling and self-organising segregation. Eur. Phys. J. B, 57, 473–479 (2007)Google Scholar
  44. 44.
    Friedkin, N.E., Johnsen, E.C.: Social Influence Networks and Opinion Change. Adv. Group Proces., 16, 1–29 (1999)Google Scholar
  45. 45.
    Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Artif. Soc Social Simul., 5(2002)Google Scholar
  46. 46.
    Sznajd-Weron, K.: Sznajd model and its applications. Acta Phys. Polonica B, 36, 1001–1011 (2005)Google Scholar
  47. 47.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Modern Phys., 81, 591–646 (2009)CrossRefGoogle Scholar
  48. 48.
    Stauffer, D., Sousa, A.O., De Oliviera, M.: Generalization to square lattice of Sznajd sociophysics model. Int. J. Mod. Phys. C, 11, 1239–1245 (2000)CrossRefGoogle Scholar
  49. 49.
    Wu, F.Y.: The Potts model. Rev. Mod. Phys., 54, 235–268 (1982)CrossRefGoogle Scholar
  50. 50.
    Ochrombel, R.: Simulation of Sznajd sociophysics model with convincing single opinions. Int. J. Mod. Phys. C, 12, 1091 (2001)CrossRefGoogle Scholar
  51. 51.
    Ben-Naim, E., Frachebourg, L., Krapivsky, P.L.: Coarsening and persistence in the voter model. Phys. Rev. E, 53, 3078 (1996)CrossRefGoogle Scholar
  52. 52.
    Slanina, F., Lavicka, H.: Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35, 279–288 (2003)CrossRefGoogle Scholar
  53. 53.
    Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Compl. Syst., 3, 87–98 (2000)CrossRefGoogle Scholar
  54. 54.
    Ben-Naim, E., Krapivsky, P.L., Redner, S.: Bifurcations and patterns in compromise processes. Physica D, 183, 190 (2003)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Toscani, G.: Kinetic models of opinion formation. Comm. Math. Sci., 4, 481–496 (2006)MATHMathSciNetGoogle Scholar
  56. 56.
    McNamara, S., Young, W.R.: Kinetics of a onedimensional granular medium in the quasielastic limit. Phys. Fluids A, 5, 34 (1993)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106 Springer-Verlag, New York (1994)Google Scholar
  58. 58.
    Boudin, L., Monaco, R., Salvarani, F.: A Kinetic Model for multidimensional opinion formation. To appear in Phys. Rev. E (2009)Google Scholar
  59. 59.
    Holyst, J.A., Kacperski, K., Schweitzer, F.: Social impact models of opinion dynamics. Ann. Rev. Comp. Phys., 9, 253–273 (2001)CrossRefGoogle Scholar
  60. 60.
    Bellomo N.: Modeling Complex Living Systems. Birkhäuser, Boston (2008)MATHGoogle Scholar
  61. 61.
    Aletti, G., Naldi, G., Toscani, G.: First-order continuous models of opinion formation. SIAM J. Appl. Math., 67, 837–853 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Giacomo Aletti
    • 1
  • Ahmad K. Naimzada
    • 2
  • Giovanni Naldi
    • 1
  1. 1.Department of Mathematics and ADAMSS CenterUniversità degli studi di MilanoMilanoItaly
  2. 2.Department of Quantitative methods for Business EconomicsUniversità degli studi di Milano BicoccaMilanoItaly

Personalised recommendations