Advertisement

Tolstoy’s dream and the quest for statistical equilibrium in economics and the social sciences

  • Ubaldo Garibaldi
  • Enrico Scalas
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

The meaning of the notion of statistical equilibrium in economics is discussed as well as its relevance for economic theory. A simple agent-based model of taxation and redistribution is presented. Its invariant equilibrium distribution is the generalized Pólya sampling distribution. It turns out that the expected wealth distribution is the dichotomous Pólya whose continuous limit is the Beta distribution and whose appropriate thermodynamic limit is the Gamma distribution, often found in describing empirical data. The shape parameter of the Gamma distribution is the inverse of the wealth preferential attachment α−1.

Keywords

Marginal Distribution Continuous Limit Thermodynamic Limit Wealth Distribution Invariant Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki M., Yoshikawa H.: Reconstructing Macroeconomics. A Perspective from Statistical Physics and Combinatorial Stochastic Processes. Cambridge University Press, Cambridge, UK (2007)Google Scholar
  2. 2.
    Bunge M.: Systemism: the alternative to individualism and holism. Journal of Socio-Economics, 29, 147–157 (2000)CrossRefGoogle Scholar
  3. 3.
    Costantini D., Garibaldi U.: A Probabilistic Foundation of Elementary Particle Statistics. Part I. Stud. Hist. Phil. Mod. Phys., 28, 483–506 (1997)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Costantini D., Garibaldi U.: A Probabilistic Foundation of Elementary Particle Statistics. Part II. Stud. Hist. Phil. Mod. Phys., 29, 37–59 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Costantini D., Garibaldi U.: The Ehrenfest Fleas: From Model to Theory. Synthese, 139, 107–142 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garibaldi U., Scalas E., Viarengo P.: Statistical equilibrium in simple exchange games II. The redistribution game. Eur. Phys. J. B, 60, 241–246 (2007)MATHCrossRefGoogle Scholar
  7. 7.
    Garibaldi U., Scalas E.: Finitary Probabilistic Methods in Econophysics. Cambridge University Press, Cambridge UK (2010)Google Scholar
  8. 8.
    Hacking I.: The Taming of Chance. Cambridge University Press, Cambridge UK (1990)Google Scholar
  9. 9.
    Ingrao B., Israel G.: The Invisible Hand. Economic Equilibrium in the History of Science. MIT Press, Cambridge MA (1990)MATHGoogle Scholar
  10. 10.
    Penrose O.: Foundations of Statistical Mechanics: A Deductive Treatment. Dover, New York (1970)MATHGoogle Scholar
  11. 11.
    Scalas E., Garibaldi U., Donadio S.: Statistical equilibrium in simple exchange games I. Methods of solution and application to the Bennati-Dragulescu-Yakovenko (BDY) game. Eur. Phys. J. B, 53, 267–272 (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Scalas E., Garibaldi U.: A Dynamic Probabilistic Version of the AokiYoshikawa Sectoral Productivity Model. Economics, The Open-Access, Open-Assessment E-J., 3, 2009–15 http://www.economics-ejournal.org/economics/journalarticles/2009--15 (2009)Google Scholar
  13. 13.
    Schumpeter J.: Das Wesen und der Hauptinhalt der theoretischen Nationalökonomie. Duncker und Humblot, München and Leipzig (1908)Google Scholar
  14. 14.
    Tesfatsion L., Judd K.L. (eds.): Handbook of Computational Economics, 2. Agent-Based Computational Economics. North Holland, Amsterdam (2006)Google Scholar
  15. 15.
    Tolstoy L.N.: War and Peace, http://www.gutenberg.org/dirs/etext01/wrnpc11.txt (1869)
  16. 16.
    von Mises R.: Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik. Rosenberg, New York (1945)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaIMEM-CNR and Università di GenovaGenovaItaly
  2. 2.Dipartimento di Scienze e Tecnologie AvanzateUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations