This survey is concerned with the modeling and mathematical analysis of continuous population equations. These models describe the change of the number of species due to birth, death, spatial movements, or stage variations. Our main focus is on spatially inhomogeneous models, given by reaction-diffusion equations, but we review also age- and size-structured and time-delayed population models. Results on the existence and stability of solutions as well as their qualitative behavior are given.


Population Model Global Existence Travel Wave Solution Global Attractor Parabolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ai and W. Huang. Travelling waves for a reaction-diffusion system in population dynamics and epidemiology. Proc. Roy. Soc. Edinburgh, Sec. A 135 (2005), 663–675.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    W. Aiello and H. Freedman. A time-delay model of single-species growth with stage structure. Math. Biosci. 101 (1990), 139–153.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Allee. The Social Life of Animals. W. Norton, New York, 1938.Google Scholar
  4. 4.
    F. Al-Omari and S. Gourley. Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63 (2003), 2063–2086.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Amann. Dynamic theory of quasilinear parabolic equations. III. Global existence. Math. Z. 202 (1989), 219–250.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Amann. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Int. Eqs. 3 (1990), 13–75.MATHMathSciNetGoogle Scholar
  8. 8.
    B. Ayati. A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J. Numer. Anal. 37 (2000), 1571–1589.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Banasiak and Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete Cont. Dynam. Sys. B 11 (2009), 563–585.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Barrett and J. Blowey. Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98 (2004), 195–221.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Berestycki, O. Diekmann, C. Nagelkerke, and P. Zegeling. Can a species keep pace with a shifting climate? Bull. Math. Biol. 71 (2009), 399–429.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Berestycki and L. Rossi. Reaction-diffusion equations for population dynamics with forced speed. I – the case of the whole space. Discrete Cont. Dynam. Sys. A 21 (2008), 41–67.MATHMathSciNetGoogle Scholar
  13. 13.
    J. Billingham. Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 17 (2004), 313–346.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. di Blasio. Non-linear age-dependent population diffusion. J. Math. Biol. 8 (1979), 265–284.MATHMathSciNetGoogle Scholar
  15. 15.
    F. Brauer and C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Springer, Berlin, 2001.MATHGoogle Scholar
  16. 16.
    N. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50 (1990), 1663–1688.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Busenberg and M. Iannelli. A degenerate nonlinear diffusion problem in age-structured population dynamics. Nonlin. Anal. 7 (1983), 1411–1429.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley & Sons, Chichester, 2003.MATHGoogle Scholar
  19. 19.
    R. Casten and C. Holland. Instability results for reaction diffusion equations with Neumann boundary conditions. J. Diff. Eqs. 27 (1978), 266–273.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Chen and A. Jüngel. Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004), 301–322.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Diff. Eqs. 224 (2006), 39–59.MATHCrossRefGoogle Scholar
  22. 22.
    L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering. Commun. Part. Diff. Eqs. 32 (2007), 127–148.MATHCrossRefGoogle Scholar
  23. 23.
    W. Chen and R. Peng. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J. Math. Anal. Appl. 291 (2004), 550–564.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    X. Chen, Y. Qi, and M. Wang. Steady states of a strongly coupled prey-predator model. Discrete Contin. Dynam. Sys., Suppl. (2005), 173–180.Google Scholar
  25. 25.
    Y. Choi, R. Lui, and Y. Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete Contin. Dynam. Sys. A 9 (2003), 1193–1200.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Conway and J. Smoller. Diffusion and the predator-prey interaction. SIAM J. Appl. Math. 33 (1977), 673–686.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Cushing. An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 71. SIAM, Philadelphia, 1998.Google Scholar
  28. 28.
    P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76 (1997), 991–1015.MATHMathSciNetGoogle Scholar
  29. 29.
    P. Degond, S. Génieys, and A. Jüngel. Symmetrization and entropy inequality for general diffusion equations. C. R. Acad. Sci. Paris, Sér. I 325 (1997), 963–968.MATHGoogle Scholar
  30. 30.
    P. Degond, S. Génieys, and A. Jüngel. A steady-state model in nonequilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci. 21 (1998), 1399–1413.MATHCrossRefGoogle Scholar
  31. 31.
    M. Delgado, M. Montenegro, and A. Suárez. A Lotka-Volterra symbiotic model with cross-diffusion. J. Diff. Eqs. 246 (2009), 2131–2149.MATHCrossRefGoogle Scholar
  32. 32.
    K. Deng. On a nonlocal reaction-diffusion population model. Discrete Cont. Dynam. Sys. B 9 (2008), 65–73.MATHGoogle Scholar
  33. 33.
    P. Deuring. An initial-boundary-value problem for a certain density-dependent diffusion system. Math. Z. 194 (1987), 375–396.MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Doumic, B. Perthame, and J. Zubelli. Numerical solution of an inverse problem in size-structured population dynamics. Inverse Problems 25 (2009), 045008 (25pp).MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Dreher. Analysis of a population model with strong cross-diffusion in an unbounded domain. Proc. Roy. Soc. Edinburgh, Sec. A 138 (2008), 769–786.MATHMathSciNetGoogle Scholar
  36. 36.
    S. Dunbar. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in \({\mathbb{R}}^{4}.\) Trans. Am. Math. Soc. 286 (1984), 557–594.MATHMathSciNetGoogle Scholar
  37. 37.
    L. Edelstein-Keshet. Mathematical Models in Biology. Classics Appl. Math., Vol. 46. SIAM, Philadelphia, 2005.Google Scholar
  38. 38.
    S.-I. Ei and M. Mimura. Pattern formation in heterogeneous reaction-diffusion-advection systems with an application to population dynamics. SIAM J. Math. Anal. 21 (1990), 346–361.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Q. Fang. Inertial manifold theory for a class of reaction-diffusion equations on thin tubular domains. Hiroshima Math. J. 23 (1993), 459–508.MATHMathSciNetGoogle Scholar
  40. 40.
    M. Farkas. On the distribution of capital and labour in a closed economy. Southeast Asian Bull. Math. 19 (1995), 27–36.MATHMathSciNetGoogle Scholar
  41. 41.
    J. Farkas and T. Hagen. Stability and regularity results for a size-structured population model. J. Math. Anal. Appl. 328 (2007), 119–136.MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Farkas and T. Hagen. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete Cont. Dynam. Sys. B 9 (2009), 249–266.MathSciNetGoogle Scholar
  43. 43.
    R. Fisher. The wave of advance of advantageous genes. Ann. Eugenics 7 (1937), 355–369.Google Scholar
  44. 44.
    J. Flavin and S. Rionero. Cross-diffusion influence on the non-linear L 2-stability analysis for a Lotka-Volterra reaction-diffusion system of PDEs. IMA J. Appl. Math. 72 (2007), 540–555.MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    H. von Foerster. Some remarks on changing populations. In F. Stohlman (ed.), The Kinetics of Cell Proliferation, pp. 382–407. Grune and Stratton, New York, 1959.Google Scholar
  46. 46.
    S.-M. Fu, H.-Y. Gao, and S.-B. Cui. Global solutions for the competitor-competitor-mutualist model with cross-diffusion. Acta Math. Sinica (Chin. Ser.) 51 (2008), 153–164.MATHMathSciNetGoogle Scholar
  47. 47.
    G. Galiano, M. Garzón, and A. Jüngel. Analysis and numerical solution of a nonlinear cross-diffusion model arising in population dynamics. Rev. Real Acad. Ciencias, Ser A. Mat. 95 (2001), 281–295.MATHGoogle Scholar
  48. 48.
    G. Galiano, M. Garzón, and A. Jüngel. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003), 655–673.MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    G. Galiano, A. Jüngel, and J. Velasco. A parabolic cross-diffusion system for granular materials. SIAM J. Math. Anal. 35 (2003), 561–578.MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    G. Gambino, M. Lombardo, and M. Sammartino. A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion. Appl. Numer. Math. 59 (2009), 1059–1074.MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    W. Gan and Z. Lin. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model. J. Math. Anal. Appl. 337 (2008), 1089–1099.MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    S. Gourley and N. Britton. Instability of travelling wave solutions of a population model with nonlocal effects. IMA J. Appl. Math. 51 (1993), 299–310.MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    S. Gourley and Y. Kuang. Wavefronts and global stability in a time-delayed population model with stage structure. Proc. Roy. Soc. London A 459 (2003), 1563–1579.MATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Gourley and J. So. Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44 (2002), 49–78.MATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    S. Gourley, J. So, and J. Wu. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124 (2004), 5119–5153.MathSciNetCrossRefGoogle Scholar
  56. 56.
    W. Gurney, S. Blythe, and R. Nisbet. Nicholson’s blowflies revisited. Nature 287 (1980), 17–21.CrossRefGoogle Scholar
  57. 57.
    M. Gurtin. A system of equations for age-dependent population diffusion. J. Theor. Biol. 40 (1973), 389–392.CrossRefGoogle Scholar
  58. 58.
    M. Gurtin and R. MacCamy. Nonlinear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54 (1974), 281–300.MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Gurtin and R. MacCamy. Diffusion models for age-structured populations. Math. Biosci. 54 (1981), 49–59.MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    M.-T. Gyi and A. Jüngel. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Diff. Eqs. 5 (2000), 773–800.MATHGoogle Scholar
  61. 61.
    D. Horstmann. Remarks on some Lotka-Volterra type cross-diffusion models. Nonlin. Anal.: Real World Appl. 8 (2007), 90–117.MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    G. Hutchinson. Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50 (1948–1950), 221–246.CrossRefGoogle Scholar
  63. 63.
    M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Appl. Math. Monographs, CNR. Giardini Editori e Stampatori, Pisa, 1995.Google Scholar
  64. 64.
    M. Iida, T. Muramatsu, H. Ninomiya, and E. Yanagida. Diffusion induced extinction of a superior species in competition models. Jpn. J. Indust. Appl. Math. 15 (1998), 233–252.MATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Jimbo. Singular perturbation of domains and the semilinear elliptic equation. II. J. Diff. Eqs. 75 (1988), 264–289.MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Jimbo. Perturbed equilibrium solutions in the singularly perturbed domain: L (Ω(ζ))-formulation and elaborate characterization. Lect. Notes Numer. Appl. Anal. 11 (1991), 55–75.MathSciNetGoogle Scholar
  67. 67.
    A. Jüngel and D. Matthes. The Derrida-Lebowitz-Speer-Spohn equation: existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996–2015.MATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    A. Jüngel and R. Pinnau. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000), 760–777.MATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Y. Kan-on and M. Mimura. Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics. SIAM J. Math. Anal. 29 (1998), 1519–1536.MATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    N. Kato. Optimal harvesting for nonlinear size-structured population dynamics. J. Math. Anal. Appl. 342 (2008), 1388–1398.MATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    S. Kawashima and Y. Shizuta. On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J., II. Ser. 40 (1988), 449–464.MATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    T. Kiffe and J. Matis. Stochastic Population Models: A Compartmental Perspective. Springer, Berlin, 2000.MATHGoogle Scholar
  73. 73.
    J. Kim. Smooth solutions to a quasi-linear system of diffusion equations for a certain population model. Nonlin. Anal. 8 (1984), 1121–1144.MATHCrossRefGoogle Scholar
  74. 74.
    M.-Y. Kim and E.-J. Park. Characteristic finite element methods for diffusion epidemic models with age-structured populations. Appl. Math. Comput. 97 (1998), 55–70.MATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    K. Kishimoto and H. Weinberger. The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Diff. Eqs. 58 (1985), 15–21.MATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    S. Knies. Schwache Lösungen von Halbleitergleichungen im Falle von Ladungstransport mit Streueffekten. PhD thesis, Universität Bonn, Germany, 1997.MATHGoogle Scholar
  77. 77.
    A. Kolmogorov, I. Petrovsky, and N. Piskunov. Etude de l’équation de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique. Moscow Univ. Bull. Math. 1 (1937), 1–25.Google Scholar
  78. 78.
    N. Kopell and L. Howard. Plane wave solutions to reaction-diffusion equations. Studies Appl. Mat. 52 (1973), 291–328.MATHMathSciNetGoogle Scholar
  79. 79.
    S. Kovács. Turing bifurcation in a system with cross-diffusion. Nonlin. Anal.: Theory Meth. Appl. 59 (2004), 567–581.MATHGoogle Scholar
  80. 80.
    Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Academic Press, London, 1993.MATHGoogle Scholar
  81. 81.
    H. Kuiper and L. Dung. Global attractors for cross diffusion systems on domains of arbitrary dimension. Rocky Mountain J. Math. 37 (2007), 1645–1668.MATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    K. Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete Contin. Dynam. Sys. A 24 (2009), 489–509.MATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    D. Le. Cross diffusion systems in n spatial dimensional domains. Indiana Univ. Math. J. 51 (2002), 625–643.MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    D. Le. Regularity of solutions to a class of cross diffusion systems. SIAM J. Math. Anal. 36 (2005), 1929–1942.MATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    D. Le. Global existence for a class of strongly coupled parabolic systems. Ann. Mat. Pura Appl. (4) 185 (2006), 133–154.MATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    D. Le and T. Nguyen. Global attractors and uniform persistence for cross diffusion parabolic systems. Dynam. Sys. Appl. 16 (2007), 361–377.MATHMathSciNetGoogle Scholar
  87. 87.
    D. Le, L. Nguyen, and T. Nguyen. Shigesada-Kasawaki-Teramoto model in higher dimensional domains. Electronic J. Diff. Eqs. 72 (2003), 1–12.Google Scholar
  88. 88.
    A. Leung. Limiting behaviour for a prey-predator model with diffusion and crowding effects. J. Math. Biol. 6 (1978), 87–93.MATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    L. Li and R. Logan. Positive solutions to general elliptic competition models. J. Diff. Int. Eqs. 4 (1991), 817–834.MATHMathSciNetGoogle Scholar
  90. 90.
    G. Li, M. Mei, and Y. Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Math. Biosci. Engin. 5 (2008), 85–100.MATHMathSciNetGoogle Scholar
  91. 91.
    Y. Li and C. Zhang. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete Contin. Dynam. Sys. A 12 (2005), 185–192.MATHGoogle Scholar
  92. 92.
    L. Lopez and D. Trigiante. A finite-difference scheme for a stiff problem arising in the numerical solution of a population dynamical model with spatial diffusion. Nonlin. Anal. 9 (1985), 1–12.MATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    A. Lotka. Elements of Physical Biology. Williams & Wilkans Company, Baltimore, 1925.MATHGoogle Scholar
  94. 94.
    Y. Lou, S. Martinez, and W.-M. Ni. On 3 ×3 Lotka-Volterra competition systems with cross-diffusion. Discrete Contin. Dynam. Sys. A 6 (2000), 175–190.MATHMathSciNetGoogle Scholar
  95. 95.
    Y. Lou, T. Nagylaki, and W.-M. Ni. On diffusion-induced blowups in a mutualistic model. Nonlin. Anal.: Theory Meth. Appl. 45 (2001), 329–342.MATHMathSciNetCrossRefGoogle Scholar
  96. 96.
    Y. Lou and W.-M. Ni. Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqs. 131 (1996), 79–131.MATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    Y. Lou, W.-M. Ni, and Y. Wu. On the global existence of a cross-diffusion system. Discrete Contin. Dynam. Sys. A 4 (1998), 193–203.MATHCrossRefGoogle Scholar
  98. 98.
    R. MacCamy. A population model with non-linear diffusion. J. Diff. Eqs. 39 (1981), 52–72.MATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    P. Magal and S. Ruan (eds.). Structured Population Models in Biology and Epidemiology. Springer, Berlin, 2008.MATHGoogle Scholar
  100. 100.
    T. Malthus. An Essay on the Principles of Population. First edition. London, 1798.Google Scholar
  101. 101.
    H. Matano. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS Kyoto Univ. 15 (1979), 401–454.MATHMathSciNetCrossRefGoogle Scholar
  102. 102.
    H. Matano and M. Mimura. Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19 (1983), 1049–1079.MATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    R. May. Time-delay versus stability in population models with two or three trophic levels. Ecology 54 (1973), 315–325.CrossRefGoogle Scholar
  104. 104.
    A. McKendrick. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44 (1926), 98–130.CrossRefGoogle Scholar
  105. 105.
    J. Metz and O. Diekmann. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomath., Vol. 68. Springer, Berlin, 1986.Google Scholar
  106. 106.
    P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84 (2005), 1235–1260.MATHMathSciNetGoogle Scholar
  107. 107.
    M. Mimura. Stationary pattern of some density-dependent diffusion system with competitive dynamics. Hiroshima Math. J. 11 (1981), 621–635.MATHMathSciNetGoogle Scholar
  108. 108.
    M. Mimura and K. Kawasaki. Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9 (1980), 49–64.MATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    S. Mischler, B. Perthame, and L. Ryzhik. Stability in a nonlinear population maturation model. Math. Models Meth. Appl. Sci. 12 (2002), 1751–1772.MATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    J. Murray. Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion. J. Theor. Biol. 52 (1975), 459–469.CrossRefGoogle Scholar
  111. 111.
    J. Murray. Mathematical Biology: II. Spatial Models and Biomedical Applications. Third edition. Springer, Berlin, 2002.Google Scholar
  112. 112.
    J. Murray. Mathematical Biology: I. An Introduction. Third edition. Springer, Berlin, 2007.Google Scholar
  113. 113.
    W.-M. Ni. Diffusion, cross-diffusion and their spike-layer steady states. Notices Am. Math. Soc. 45 (1998), 9–18.MATHGoogle Scholar
  114. 114.
    N. Ninomiya. Separatrices of competition-diffusion equations. Publ. Res. Inst. Math. Sci. 35 (1995), 539–567.MATHMathSciNetGoogle Scholar
  115. 115.
    A. Okubo and S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Second edition. Springer, New York, 2002.MATHGoogle Scholar
  116. 116.
    C. Pao. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlin. Anal.: Theory Meth. Appl. 60 (2005), 1197–1217.MATHMathSciNetCrossRefGoogle Scholar
  117. 117.
    G. Pelovska. Numerical Investigations in the Field of Age-Structured Population Dynamics. PhD thesis, Universitá degli studi di Trento, Italy, 2007.Google Scholar
  118. 118.
    G. Pelovska. An improved explicit scheme for age-dependent population models with spatial diffusion. Internat. J. Numer. Anal. Modeling 5 (2008), 466–490.MATHMathSciNetGoogle Scholar
  119. 119.
    B. Perthame. Transport Equations in Biology. Birkhäuser, Basel, 2007.MATHGoogle Scholar
  120. 120.
    B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or cell-division equation. J. Diff. Eqs. 210 (2005), 155–177.MATHMathSciNetCrossRefGoogle Scholar
  121. 121.
    M. Pozio and A. Tesei. Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal. 14 (1990), 657–689.MATHMathSciNetCrossRefGoogle Scholar
  122. 122.
    R. Redlinger. Existence theorems for semilinear parabolic systems with functionals. Nonlin. Anal. 8 (1984), 667–682.MATHMathSciNetCrossRefGoogle Scholar
  123. 123.
    R. Redlinger. Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. J. Diff. Eqs. 118 (1995), 219–252.MATHMathSciNetCrossRefGoogle Scholar
  124. 124.
    F. Rothe. Convergence to the equilibrium state in the Volterra-Lotka diffusion equations. J. Math. Biol. 3 (1976), 319–324.MATHMathSciNetGoogle Scholar
  125. 125.
    W. Ruan. Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients. J. Math. Anal. Appl. 197 (1996), 558–578.MATHMathSciNetCrossRefGoogle Scholar
  126. 126.
    K. Ryu and I. Ahn. Positive steady-states for two interacting species models with linear self-cross diffusions. Discrete Contin. Dynam. Sys. A 9 (2003), 1049–1061.MATHMathSciNetCrossRefGoogle Scholar
  127. 127.
    K. Ryu and I. Ahn. Coexistence states of certain population models with nonlinear diffusions among multi-species. Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 12 (2005), 235–246.MATHMathSciNetGoogle Scholar
  128. 128.
    F. Sharpe and A. Lotka. A problem in age distribution. Philos. Mag. 21 (1911), 435–438.Google Scholar
  129. 129.
    J. Shi and R. Shivaji. Persistence in reaction diffusion models. J. Math. Biol. 52 (2006), 807–829.MATHMathSciNetCrossRefGoogle Scholar
  130. 130.
    N. Shigesada, K. Kawasaki, and E. Teramoto. Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83–99.MathSciNetCrossRefGoogle Scholar
  131. 131.
    S. Shim. Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqs. 185 (2002), 281–305.MATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    S. Shim. Uniform boundedness and convergence of solutions to the systems with cross-diffusions dominated by self-diffusions. Nonlin. Anal.: Real World Appl. 4 (2003), 65–86.MATHMathSciNetCrossRefGoogle Scholar
  133. 133.
    S. Shim. Uniform boundedness and convergence of solutions to the systems with a single nonzero cross-diffusion. J. Math. Anal. Appl. 279 (2003), 1–21.MATHMathSciNetCrossRefGoogle Scholar
  134. 134.
    S. Shim. Long-time properties of prey-predator system with cross-diffusion. Commun. Korean Math. Soc. 21 (2006), 293–320.MATHMathSciNetCrossRefGoogle Scholar
  135. 135.
    J. Simon. Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146 (1987), 65–96.MATHMathSciNetCrossRefGoogle Scholar
  136. 136.
    J. So and X. Zou. Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 122 (2001), 385–392.MATHMathSciNetCrossRefGoogle Scholar
  137. 137.
    G. Sun, D. Liang, and W. Wang. Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates. Numer. Meth. Part. Diff. Eqs. 25 (2009), 470–493.MATHMathSciNetCrossRefGoogle Scholar
  138. 138.
    P. V. Tuoc. Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions. Proc. Am. Math. Soc. 135 (2007), 3933–3941.MATHMathSciNetCrossRefGoogle Scholar
  139. 139.
    A. Turing. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond., Ser. B 237 (1952), 37–72.CrossRefGoogle Scholar
  140. 140.
    J. Vano, J. Wildenberg, M. Anderson, J. Noel, and J. Sprott. Chaos in low-dimensional Lotka-Volterra models of conpetition. Nonlinearity 19 (2006), 2391–2404.MATHMathSciNetCrossRefGoogle Scholar
  141. 141.
    P.-F. Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Math. Phys. 10 (1938), 113–121.Google Scholar
  142. 142.
    V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei, Ser. VI 2 (1926), 31–113.Google Scholar
  143. 143.
    P. Waltman. Competition Models in Population Biology. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 45. SIAM, Philadelphia, 1983.Google Scholar
  144. 144.
    G. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Pure and Applied Mathematics, Vol. 89. Marcel Dekker, New York, 1985.Google Scholar
  145. 145.
    Z. Wen and S. Fu. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230 (2009), 34–43.MATHMathSciNetCrossRefGoogle Scholar
  146. 146.
    P. Weng and Z. Xu. Wavefronts for a global reaction-diffusion population model with infinite distributed delay. J. Math. Anal. Appl. 345 (2008), 522–534.MATHMathSciNetCrossRefGoogle Scholar
  147. 147.
    S. Williams and P. Chow. Nonlinear reaction-diffusion models for interacting populations. J. Math. Anal. Appl. 62 (1978), 157–169.MATHMathSciNetCrossRefGoogle Scholar
  148. 148.
    D. Xu and X.-Q. Zhao. A nonlocal reaction-diffusion population model with stage structure. Can. Appl. Math. Quart. 11 (2003), 303–319.MATHMathSciNetGoogle Scholar
  149. 149.
    A. Yagi. Global solution to some quasilinear parabolic systems in population dynamics. Nonlin. Anal. 21 (1993), 603–630.MATHMathSciNetCrossRefGoogle Scholar
  150. 150.
    A. Yagi. Exponential attractors for competing species model with cross-diffusions. Discrete Contin. Dynam. Sys. A 22 (2008), 1091–1120.MATHMathSciNetGoogle Scholar
  151. 151.
    Y. Yamada. Global solutions for quasilinear parabolic systems with cross-diffusion effects. Nonlin. Anal. 24 (1995), 1395–1412.MATHCrossRefGoogle Scholar
  152. 152.
    W. Yang. A class of quasilinear parabolic systems with cross-diffusion effects. Commun. Nonlin. Sci. Numer. Simul. 4 (1999), 271–275.MATHCrossRefGoogle Scholar
  153. 153.
    W. Yang. A class of the quasilinear parabolic systems arising in population dynamics. Meth. Appl. Anal. 9 (2002), 261–272.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria

Personalised recommendations