Skip to main content

Summary

This survey is concerned with the modeling and mathematical analysis of continuous population equations. These models describe the change of the number of species due to birth, death, spatial movements, or stage variations. Our main focus is on spatially inhomogeneous models, given by reaction-diffusion equations, but we review also age- and size-structured and time-delayed population models. Results on the existence and stability of solutions as well as their qualitative behavior are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ai and W. Huang. Travelling waves for a reaction-diffusion system in population dynamics and epidemiology. Proc. Roy. Soc. Edinburgh, Sec. A 135 (2005), 663–675.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Aiello and H. Freedman. A time-delay model of single-species growth with stage structure. Math. Biosci. 101 (1990), 139–153.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Allee. The Social Life of Animals. W. Norton, New York, 1938.

    Google Scholar 

  4. F. Al-Omari and S. Gourley. Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63 (2003), 2063–2086.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Amann. Dynamic theory of quasilinear parabolic equations. III. Global existence. Math. Z. 202 (1989), 219–250.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Amann. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Int. Eqs. 3 (1990), 13–75.

    MATH  MathSciNet  Google Scholar 

  8. B. Ayati. A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J. Numer. Anal. 37 (2000), 1571–1589.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Banasiak and Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete Cont. Dynam. Sys. B 11 (2009), 563–585.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Barrett and J. Blowey. Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98 (2004), 195–221.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Berestycki, O. Diekmann, C. Nagelkerke, and P. Zegeling. Can a species keep pace with a shifting climate? Bull. Math. Biol. 71 (2009), 399–429.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Berestycki and L. Rossi. Reaction-diffusion equations for population dynamics with forced speed. I – the case of the whole space. Discrete Cont. Dynam. Sys. A 21 (2008), 41–67.

    MATH  MathSciNet  Google Scholar 

  13. J. Billingham. Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 17 (2004), 313–346.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. di Blasio. Non-linear age-dependent population diffusion. J. Math. Biol. 8 (1979), 265–284.

    MATH  MathSciNet  Google Scholar 

  15. F. Brauer and C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Springer, Berlin, 2001.

    MATH  Google Scholar 

  16. N. Britton. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50 (1990), 1663–1688.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Busenberg and M. Iannelli. A degenerate nonlinear diffusion problem in age-structured population dynamics. Nonlin. Anal. 7 (1983), 1411–1429.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley & Sons, Chichester, 2003.

    MATH  Google Scholar 

  19. R. Casten and C. Holland. Instability results for reaction diffusion equations with Neumann boundary conditions. J. Diff. Eqs. 27 (1978), 266–273.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Chen and A. Jüngel. Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004), 301–322.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Diff. Eqs. 224 (2006), 39–59.

    Article  MATH  Google Scholar 

  22. L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering. Commun. Part. Diff. Eqs. 32 (2007), 127–148.

    Article  MATH  Google Scholar 

  23. W. Chen and R. Peng. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J. Math. Anal. Appl. 291 (2004), 550–564.

    Article  MATH  MathSciNet  Google Scholar 

  24. X. Chen, Y. Qi, and M. Wang. Steady states of a strongly coupled prey-predator model. Discrete Contin. Dynam. Sys., Suppl. (2005), 173–180.

    Google Scholar 

  25. Y. Choi, R. Lui, and Y. Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete Contin. Dynam. Sys. A 9 (2003), 1193–1200.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Conway and J. Smoller. Diffusion and the predator-prey interaction. SIAM J. Appl. Math. 33 (1977), 673–686.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Cushing. An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 71. SIAM, Philadelphia, 1998.

    Google Scholar 

  28. P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76 (1997), 991–1015.

    MATH  MathSciNet  Google Scholar 

  29. P. Degond, S. Génieys, and A. Jüngel. Symmetrization and entropy inequality for general diffusion equations. C. R. Acad. Sci. Paris, Sér. I 325 (1997), 963–968.

    MATH  Google Scholar 

  30. P. Degond, S. Génieys, and A. Jüngel. A steady-state model in nonequilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci. 21 (1998), 1399–1413.

    Article  MATH  Google Scholar 

  31. M. Delgado, M. Montenegro, and A. Suárez. A Lotka-Volterra symbiotic model with cross-diffusion. J. Diff. Eqs. 246 (2009), 2131–2149.

    Article  MATH  Google Scholar 

  32. K. Deng. On a nonlocal reaction-diffusion population model. Discrete Cont. Dynam. Sys. B 9 (2008), 65–73.

    MATH  Google Scholar 

  33. P. Deuring. An initial-boundary-value problem for a certain density-dependent diffusion system. Math. Z. 194 (1987), 375–396.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Doumic, B. Perthame, and J. Zubelli. Numerical solution of an inverse problem in size-structured population dynamics. Inverse Problems 25 (2009), 045008 (25pp).

    Article  MathSciNet  Google Scholar 

  35. M. Dreher. Analysis of a population model with strong cross-diffusion in an unbounded domain. Proc. Roy. Soc. Edinburgh, Sec. A 138 (2008), 769–786.

    MATH  MathSciNet  Google Scholar 

  36. S. Dunbar. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in \({\mathbb{R}}^{4}.\) Trans. Am. Math. Soc. 286 (1984), 557–594.

    MATH  MathSciNet  Google Scholar 

  37. L. Edelstein-Keshet. Mathematical Models in Biology. Classics Appl. Math., Vol. 46. SIAM, Philadelphia, 2005.

    Google Scholar 

  38. S.-I. Ei and M. Mimura. Pattern formation in heterogeneous reaction-diffusion-advection systems with an application to population dynamics. SIAM J. Math. Anal. 21 (1990), 346–361.

    Article  MathSciNet  Google Scholar 

  39. Q. Fang. Inertial manifold theory for a class of reaction-diffusion equations on thin tubular domains. Hiroshima Math. J. 23 (1993), 459–508.

    MATH  MathSciNet  Google Scholar 

  40. M. Farkas. On the distribution of capital and labour in a closed economy. Southeast Asian Bull. Math. 19 (1995), 27–36.

    MATH  MathSciNet  Google Scholar 

  41. J. Farkas and T. Hagen. Stability and regularity results for a size-structured population model. J. Math. Anal. Appl. 328 (2007), 119–136.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Farkas and T. Hagen. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete Cont. Dynam. Sys. B 9 (2009), 249–266.

    MathSciNet  Google Scholar 

  43. R. Fisher. The wave of advance of advantageous genes. Ann. Eugenics 7 (1937), 355–369.

    Google Scholar 

  44. J. Flavin and S. Rionero. Cross-diffusion influence on the non-linear L 2-stability analysis for a Lotka-Volterra reaction-diffusion system of PDEs. IMA J. Appl. Math. 72 (2007), 540–555.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. von Foerster. Some remarks on changing populations. In F. Stohlman (ed.), The Kinetics of Cell Proliferation, pp. 382–407. Grune and Stratton, New York, 1959.

    Google Scholar 

  46. S.-M. Fu, H.-Y. Gao, and S.-B. Cui. Global solutions for the competitor-competitor-mutualist model with cross-diffusion. Acta Math. Sinica (Chin. Ser.) 51 (2008), 153–164.

    MATH  MathSciNet  Google Scholar 

  47. G. Galiano, M. Garzón, and A. Jüngel. Analysis and numerical solution of a nonlinear cross-diffusion model arising in population dynamics. Rev. Real Acad. Ciencias, Ser A. Mat. 95 (2001), 281–295.

    MATH  Google Scholar 

  48. G. Galiano, M. Garzón, and A. Jüngel. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003), 655–673.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Galiano, A. Jüngel, and J. Velasco. A parabolic cross-diffusion system for granular materials. SIAM J. Math. Anal. 35 (2003), 561–578.

    Article  MATH  MathSciNet  Google Scholar 

  50. G. Gambino, M. Lombardo, and M. Sammartino. A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion. Appl. Numer. Math. 59 (2009), 1059–1074.

    Article  MATH  MathSciNet  Google Scholar 

  51. W. Gan and Z. Lin. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model. J. Math. Anal. Appl. 337 (2008), 1089–1099.

    Article  MATH  MathSciNet  Google Scholar 

  52. S. Gourley and N. Britton. Instability of travelling wave solutions of a population model with nonlocal effects. IMA J. Appl. Math. 51 (1993), 299–310.

    Article  MATH  MathSciNet  Google Scholar 

  53. S. Gourley and Y. Kuang. Wavefronts and global stability in a time-delayed population model with stage structure. Proc. Roy. Soc. London A 459 (2003), 1563–1579.

    Article  MATH  MathSciNet  Google Scholar 

  54. S. Gourley and J. So. Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44 (2002), 49–78.

    Article  MATH  MathSciNet  Google Scholar 

  55. S. Gourley, J. So, and J. Wu. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124 (2004), 5119–5153.

    Article  MathSciNet  Google Scholar 

  56. W. Gurney, S. Blythe, and R. Nisbet. Nicholson’s blowflies revisited. Nature 287 (1980), 17–21.

    Article  Google Scholar 

  57. M. Gurtin. A system of equations for age-dependent population diffusion. J. Theor. Biol. 40 (1973), 389–392.

    Article  Google Scholar 

  58. M. Gurtin and R. MacCamy. Nonlinear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54 (1974), 281–300.

    Article  MATH  MathSciNet  Google Scholar 

  59. M. Gurtin and R. MacCamy. Diffusion models for age-structured populations. Math. Biosci. 54 (1981), 49–59.

    Article  MATH  MathSciNet  Google Scholar 

  60. M.-T. Gyi and A. Jüngel. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Diff. Eqs. 5 (2000), 773–800.

    MATH  Google Scholar 

  61. D. Horstmann. Remarks on some Lotka-Volterra type cross-diffusion models. Nonlin. Anal.: Real World Appl. 8 (2007), 90–117.

    Article  MATH  MathSciNet  Google Scholar 

  62. G. Hutchinson. Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50 (1948–1950), 221–246.

    Article  Google Scholar 

  63. M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Appl. Math. Monographs, CNR. Giardini Editori e Stampatori, Pisa, 1995.

    Google Scholar 

  64. M. Iida, T. Muramatsu, H. Ninomiya, and E. Yanagida. Diffusion induced extinction of a superior species in competition models. Jpn. J. Indust. Appl. Math. 15 (1998), 233–252.

    Article  MATH  MathSciNet  Google Scholar 

  65. S. Jimbo. Singular perturbation of domains and the semilinear elliptic equation. II. J. Diff. Eqs. 75 (1988), 264–289.

    Article  MATH  MathSciNet  Google Scholar 

  66. S. Jimbo. Perturbed equilibrium solutions in the singularly perturbed domain: L (Ω(ζ))-formulation and elaborate characterization. Lect. Notes Numer. Appl. Anal. 11 (1991), 55–75.

    MathSciNet  Google Scholar 

  67. A. Jüngel and D. Matthes. The Derrida-Lebowitz-Speer-Spohn equation: existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996–2015.

    Article  MATH  MathSciNet  Google Scholar 

  68. A. Jüngel and R. Pinnau. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000), 760–777.

    Article  MATH  MathSciNet  Google Scholar 

  69. Y. Kan-on and M. Mimura. Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics. SIAM J. Math. Anal. 29 (1998), 1519–1536.

    Article  MATH  MathSciNet  Google Scholar 

  70. N. Kato. Optimal harvesting for nonlinear size-structured population dynamics. J. Math. Anal. Appl. 342 (2008), 1388–1398.

    Article  MATH  MathSciNet  Google Scholar 

  71. S. Kawashima and Y. Shizuta. On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J., II. Ser. 40 (1988), 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  72. T. Kiffe and J. Matis. Stochastic Population Models: A Compartmental Perspective. Springer, Berlin, 2000.

    MATH  Google Scholar 

  73. J. Kim. Smooth solutions to a quasi-linear system of diffusion equations for a certain population model. Nonlin. Anal. 8 (1984), 1121–1144.

    Article  MATH  Google Scholar 

  74. M.-Y. Kim and E.-J. Park. Characteristic finite element methods for diffusion epidemic models with age-structured populations. Appl. Math. Comput. 97 (1998), 55–70.

    Article  MATH  MathSciNet  Google Scholar 

  75. K. Kishimoto and H. Weinberger. The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Diff. Eqs. 58 (1985), 15–21.

    Article  MATH  MathSciNet  Google Scholar 

  76. S. Knies. Schwache Lösungen von Halbleitergleichungen im Falle von Ladungstransport mit Streueffekten. PhD thesis, Universität Bonn, Germany, 1997.

    MATH  Google Scholar 

  77. A. Kolmogorov, I. Petrovsky, and N. Piskunov. Etude de l’équation de la diffusion avec croissance de la quantité de la matière et son application à un problème biologique. Moscow Univ. Bull. Math. 1 (1937), 1–25.

    Google Scholar 

  78. N. Kopell and L. Howard. Plane wave solutions to reaction-diffusion equations. Studies Appl. Mat. 52 (1973), 291–328.

    MATH  MathSciNet  Google Scholar 

  79. S. Kovács. Turing bifurcation in a system with cross-diffusion. Nonlin. Anal.: Theory Meth. Appl. 59 (2004), 567–581.

    MATH  Google Scholar 

  80. Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Academic Press, London, 1993.

    MATH  Google Scholar 

  81. H. Kuiper and L. Dung. Global attractors for cross diffusion systems on domains of arbitrary dimension. Rocky Mountain J. Math. 37 (2007), 1645–1668.

    Article  MATH  MathSciNet  Google Scholar 

  82. K. Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete Contin. Dynam. Sys. A 24 (2009), 489–509.

    Article  MATH  MathSciNet  Google Scholar 

  83. D. Le. Cross diffusion systems in n spatial dimensional domains. Indiana Univ. Math. J. 51 (2002), 625–643.

    Article  MATH  MathSciNet  Google Scholar 

  84. D. Le. Regularity of solutions to a class of cross diffusion systems. SIAM J. Math. Anal. 36 (2005), 1929–1942.

    Article  MATH  MathSciNet  Google Scholar 

  85. D. Le. Global existence for a class of strongly coupled parabolic systems. Ann. Mat. Pura Appl. (4) 185 (2006), 133–154.

    Article  MATH  MathSciNet  Google Scholar 

  86. D. Le and T. Nguyen. Global attractors and uniform persistence for cross diffusion parabolic systems. Dynam. Sys. Appl. 16 (2007), 361–377.

    MATH  MathSciNet  Google Scholar 

  87. D. Le, L. Nguyen, and T. Nguyen. Shigesada-Kasawaki-Teramoto model in higher dimensional domains. Electronic J. Diff. Eqs. 72 (2003), 1–12.

    Google Scholar 

  88. A. Leung. Limiting behaviour for a prey-predator model with diffusion and crowding effects. J. Math. Biol. 6 (1978), 87–93.

    Article  MATH  MathSciNet  Google Scholar 

  89. L. Li and R. Logan. Positive solutions to general elliptic competition models. J. Diff. Int. Eqs. 4 (1991), 817–834.

    MATH  MathSciNet  Google Scholar 

  90. G. Li, M. Mei, and Y. Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Math. Biosci. Engin. 5 (2008), 85–100.

    MATH  MathSciNet  Google Scholar 

  91. Y. Li and C. Zhang. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete Contin. Dynam. Sys. A 12 (2005), 185–192.

    MATH  Google Scholar 

  92. L. Lopez and D. Trigiante. A finite-difference scheme for a stiff problem arising in the numerical solution of a population dynamical model with spatial diffusion. Nonlin. Anal. 9 (1985), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  93. A. Lotka. Elements of Physical Biology. Williams & Wilkans Company, Baltimore, 1925.

    MATH  Google Scholar 

  94. Y. Lou, S. Martinez, and W.-M. Ni. On 3 ×3 Lotka-Volterra competition systems with cross-diffusion. Discrete Contin. Dynam. Sys. A 6 (2000), 175–190.

    MATH  MathSciNet  Google Scholar 

  95. Y. Lou, T. Nagylaki, and W.-M. Ni. On diffusion-induced blowups in a mutualistic model. Nonlin. Anal.: Theory Meth. Appl. 45 (2001), 329–342.

    Article  MATH  MathSciNet  Google Scholar 

  96. Y. Lou and W.-M. Ni. Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqs. 131 (1996), 79–131.

    Article  MATH  MathSciNet  Google Scholar 

  97. Y. Lou, W.-M. Ni, and Y. Wu. On the global existence of a cross-diffusion system. Discrete Contin. Dynam. Sys. A 4 (1998), 193–203.

    Article  MATH  Google Scholar 

  98. R. MacCamy. A population model with non-linear diffusion. J. Diff. Eqs. 39 (1981), 52–72.

    Article  MATH  MathSciNet  Google Scholar 

  99. P. Magal and S. Ruan (eds.). Structured Population Models in Biology and Epidemiology. Springer, Berlin, 2008.

    MATH  Google Scholar 

  100. T. Malthus. An Essay on the Principles of Population. First edition. London, 1798.

    Google Scholar 

  101. H. Matano. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS Kyoto Univ. 15 (1979), 401–454.

    Article  MATH  MathSciNet  Google Scholar 

  102. H. Matano and M. Mimura. Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19 (1983), 1049–1079.

    Article  MATH  MathSciNet  Google Scholar 

  103. R. May. Time-delay versus stability in population models with two or three trophic levels. Ecology 54 (1973), 315–325.

    Article  Google Scholar 

  104. A. McKendrick. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44 (1926), 98–130.

    Article  Google Scholar 

  105. J. Metz and O. Diekmann. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomath., Vol. 68. Springer, Berlin, 1986.

    Google Scholar 

  106. P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84 (2005), 1235–1260.

    MATH  MathSciNet  Google Scholar 

  107. M. Mimura. Stationary pattern of some density-dependent diffusion system with competitive dynamics. Hiroshima Math. J. 11 (1981), 621–635.

    MATH  MathSciNet  Google Scholar 

  108. M. Mimura and K. Kawasaki. Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9 (1980), 49–64.

    Article  MATH  MathSciNet  Google Scholar 

  109. S. Mischler, B. Perthame, and L. Ryzhik. Stability in a nonlinear population maturation model. Math. Models Meth. Appl. Sci. 12 (2002), 1751–1772.

    Article  MATH  MathSciNet  Google Scholar 

  110. J. Murray. Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion. J. Theor. Biol. 52 (1975), 459–469.

    Article  Google Scholar 

  111. J. Murray. Mathematical Biology: II. Spatial Models and Biomedical Applications. Third edition. Springer, Berlin, 2002.

    Google Scholar 

  112. J. Murray. Mathematical Biology: I. An Introduction. Third edition. Springer, Berlin, 2007.

    Google Scholar 

  113. W.-M. Ni. Diffusion, cross-diffusion and their spike-layer steady states. Notices Am. Math. Soc. 45 (1998), 9–18.

    MATH  Google Scholar 

  114. N. Ninomiya. Separatrices of competition-diffusion equations. Publ. Res. Inst. Math. Sci. 35 (1995), 539–567.

    MATH  MathSciNet  Google Scholar 

  115. A. Okubo and S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Second edition. Springer, New York, 2002.

    MATH  Google Scholar 

  116. C. Pao. Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion. Nonlin. Anal.: Theory Meth. Appl. 60 (2005), 1197–1217.

    Article  MATH  MathSciNet  Google Scholar 

  117. G. Pelovska. Numerical Investigations in the Field of Age-Structured Population Dynamics. PhD thesis, Universitá degli studi di Trento, Italy, 2007.

    Google Scholar 

  118. G. Pelovska. An improved explicit scheme for age-dependent population models with spatial diffusion. Internat. J. Numer. Anal. Modeling 5 (2008), 466–490.

    MATH  MathSciNet  Google Scholar 

  119. B. Perthame. Transport Equations in Biology. Birkhäuser, Basel, 2007.

    MATH  Google Scholar 

  120. B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or cell-division equation. J. Diff. Eqs. 210 (2005), 155–177.

    Article  MATH  MathSciNet  Google Scholar 

  121. M. Pozio and A. Tesei. Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal. 14 (1990), 657–689.

    Article  MATH  MathSciNet  Google Scholar 

  122. R. Redlinger. Existence theorems for semilinear parabolic systems with functionals. Nonlin. Anal. 8 (1984), 667–682.

    Article  MATH  MathSciNet  Google Scholar 

  123. R. Redlinger. Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. J. Diff. Eqs. 118 (1995), 219–252.

    Article  MATH  MathSciNet  Google Scholar 

  124. F. Rothe. Convergence to the equilibrium state in the Volterra-Lotka diffusion equations. J. Math. Biol. 3 (1976), 319–324.

    MATH  MathSciNet  Google Scholar 

  125. W. Ruan. Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients. J. Math. Anal. Appl. 197 (1996), 558–578.

    Article  MATH  MathSciNet  Google Scholar 

  126. K. Ryu and I. Ahn. Positive steady-states for two interacting species models with linear self-cross diffusions. Discrete Contin. Dynam. Sys. A 9 (2003), 1049–1061.

    Article  MATH  MathSciNet  Google Scholar 

  127. K. Ryu and I. Ahn. Coexistence states of certain population models with nonlinear diffusions among multi-species. Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 12 (2005), 235–246.

    MATH  MathSciNet  Google Scholar 

  128. F. Sharpe and A. Lotka. A problem in age distribution. Philos. Mag. 21 (1911), 435–438.

    Google Scholar 

  129. J. Shi and R. Shivaji. Persistence in reaction diffusion models. J. Math. Biol. 52 (2006), 807–829.

    Article  MATH  MathSciNet  Google Scholar 

  130. N. Shigesada, K. Kawasaki, and E. Teramoto. Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83–99.

    Article  MathSciNet  Google Scholar 

  131. S. Shim. Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqs. 185 (2002), 281–305.

    Article  MATH  MathSciNet  Google Scholar 

  132. S. Shim. Uniform boundedness and convergence of solutions to the systems with cross-diffusions dominated by self-diffusions. Nonlin. Anal.: Real World Appl. 4 (2003), 65–86.

    Article  MATH  MathSciNet  Google Scholar 

  133. S. Shim. Uniform boundedness and convergence of solutions to the systems with a single nonzero cross-diffusion. J. Math. Anal. Appl. 279 (2003), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  134. S. Shim. Long-time properties of prey-predator system with cross-diffusion. Commun. Korean Math. Soc. 21 (2006), 293–320.

    Article  MATH  MathSciNet  Google Scholar 

  135. J. Simon. Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146 (1987), 65–96.

    Article  MATH  MathSciNet  Google Scholar 

  136. J. So and X. Zou. Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 122 (2001), 385–392.

    Article  MATH  MathSciNet  Google Scholar 

  137. G. Sun, D. Liang, and W. Wang. Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates. Numer. Meth. Part. Diff. Eqs. 25 (2009), 470–493.

    Article  MATH  MathSciNet  Google Scholar 

  138. P. V. Tuoc. Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions. Proc. Am. Math. Soc. 135 (2007), 3933–3941.

    Article  MATH  MathSciNet  Google Scholar 

  139. A. Turing. The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond., Ser. B 237 (1952), 37–72.

    Article  Google Scholar 

  140. J. Vano, J. Wildenberg, M. Anderson, J. Noel, and J. Sprott. Chaos in low-dimensional Lotka-Volterra models of conpetition. Nonlinearity 19 (2006), 2391–2404.

    Article  MATH  MathSciNet  Google Scholar 

  141. P.-F. Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Math. Phys. 10 (1938), 113–121.

    Google Scholar 

  142. V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei, Ser. VI 2 (1926), 31–113.

    Google Scholar 

  143. P. Waltman. Competition Models in Population Biology. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 45. SIAM, Philadelphia, 1983.

    Google Scholar 

  144. G. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Pure and Applied Mathematics, Vol. 89. Marcel Dekker, New York, 1985.

    Google Scholar 

  145. Z. Wen and S. Fu. Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230 (2009), 34–43.

    Article  MATH  MathSciNet  Google Scholar 

  146. P. Weng and Z. Xu. Wavefronts for a global reaction-diffusion population model with infinite distributed delay. J. Math. Anal. Appl. 345 (2008), 522–534.

    Article  MATH  MathSciNet  Google Scholar 

  147. S. Williams and P. Chow. Nonlinear reaction-diffusion models for interacting populations. J. Math. Anal. Appl. 62 (1978), 157–169.

    Article  MATH  MathSciNet  Google Scholar 

  148. D. Xu and X.-Q. Zhao. A nonlocal reaction-diffusion population model with stage structure. Can. Appl. Math. Quart. 11 (2003), 303–319.

    MATH  MathSciNet  Google Scholar 

  149. A. Yagi. Global solution to some quasilinear parabolic systems in population dynamics. Nonlin. Anal. 21 (1993), 603–630.

    Article  MATH  MathSciNet  Google Scholar 

  150. A. Yagi. Exponential attractors for competing species model with cross-diffusions. Discrete Contin. Dynam. Sys. A 22 (2008), 1091–1120.

    MATH  MathSciNet  Google Scholar 

  151. Y. Yamada. Global solutions for quasilinear parabolic systems with cross-diffusion effects. Nonlin. Anal. 24 (1995), 1395–1412.

    Article  MATH  Google Scholar 

  152. W. Yang. A class of quasilinear parabolic systems with cross-diffusion effects. Commun. Nonlin. Sci. Numer. Simul. 4 (1999), 271–275.

    Article  MATH  Google Scholar 

  153. W. Yang. A class of the quasilinear parabolic systems arising in population dynamics. Meth. Appl. Anal. 9 (2002), 261–272.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jüngel, A. (2010). Diffusive and nondiffusive population models. In: Naldi, G., Pareschi, L., Toscani, G. (eds) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4946-3_15

Download citation

Publish with us

Policies and ethics