Statistical physics and modern human warfare

  • Alex Dixon
  • Zhenyuan Zhao
  • Juan Camilo Bohorquez
  • Russell Denney
  • Neil Johnson
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Modern human conflicts, such as those ongoing in Iraq, Afghanistan and Colombia, typically involve a large conventional force (e.g., a state army) fighting a relatively small insurgency having a loose internal structure. In this chapter, we adopt this qualitative picture in order to study the dynamics – and in particular the duration – of modern wars involving a loose insurgent force. We generalize a coalescence-fragmentation model from the statistical physics community in order to describe the insurgent population, and find that the resulting behavior is qualitatively different from conventional mass-action approaches. One of our main results is a counterintuitive relationship between an insurgent war’s duration and the asymmetry between the two opposing forces, a prediction which is borne out by empirical observation.


Initial Population Recruitment Rate Fragmentation Probability Duration Dependence Cluster Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)MATHGoogle Scholar
  2. 2.
    Cederman, L.: Modeling the Size of Wars. Am. Pol. Sci. Rev. 97, 135 (2003)CrossRefGoogle Scholar
  3. 3.
    Clauset, A., Young, M.: Scale Invariance in Global Terrorism. (2005)Google Scholar
  4. 4.
    Conflict Analysis Resources Center,
  5. 5.
    Cordesman, A.H.: The Developing Iraqi Insurgency. Center for Strategic and International Studies ( (2004)Google Scholar
  6. 6.
    Creveld, V.M.: The Art of War: War and Military Thought. Cassell, Wellington House (2000)Google Scholar
  7. 7.
    Cunningham, D., Gleditsch, K., Salehyan, I.: Dyadic Interactions and Civil War, 46th Annual Convention of the International Studies Association, (2005)Google Scholar
  8. 8.
    D’Hulst, R., Rodgers, G.J.: Transition from coherence to bistability in a model of Fnancial markets. Eur. Phys. J. B 20, 619 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Efron, B.: Computers and the theory of statistics: thinking the unthinkable. SIAM Rev. 21, 460–480 (1979)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eguiluz, V.M., Zimmerman, M.G.: Transmission of information and herd Behavior: an application to financial markets. Phys. Rev. Lett. 85, 5659 (2000)CrossRefGoogle Scholar
  11. 11.
    Epstein, J.: Nonlinear Dynamics, Mathematical Biology and Social Sciences. Addison-Wesley, Reading (1997)MATHGoogle Scholar
  12. 12.
    Goldstein, M.L., Morris, S.A., Yen, G.G.: Problems with fitting to the power-law distribution. Eur. Phys. J. B 41, 255 (2004)CrossRefGoogle Scholar
  13. 13.
    Gueron, S., Levin, S.A.: The dynamics of group formation. Math. Biosci. 128, 243 (1995)MATHCrossRefGoogle Scholar
  14. 14.
    Johnson, N.F., Jefferies, P., Hui, P.M.: Financial Market Complexity. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  15. 15.
    Johnson, N.F. et al., Universal patterns underlying ongoing wars and terrorism. -print (2006). See Bohorquez, J., Gourley, S. Dixon, A., Spagat, M. and Johnson, N.F. Nature in press (2009) for a full study across many modern wars.
  16. 16.
    Kaldor, M.: New and Old Wars. Stanford University Press, Stanford, CA, U.S.A. (1999)Google Scholar
  17. 17.
    MacKay, N.: Lanchester combat models. Mathematics. Math. Today, 42, 170 (2006)MathSciNetGoogle Scholar
  18. 18.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323 (2005)CrossRefGoogle Scholar
  19. 19.
    Plowes, N., Adams, E.: An empirical test of Lanchester’s square law: mortality during battles of the fire ant Solenopsis invicta. Proc. R. Soc. B 272, 1809 (2005)CrossRefGoogle Scholar
  20. 20.
    Radford A., Du Plessis, A.: Territorial vocal rallying in the green woodhoopoe: factors affecting contest length and outcome Animal Behav. 68, 803 (2004)CrossRefGoogle Scholar
  21. 21.
    Richardson, L.F.: Variation of the frequency of fatal quarrels with magnitude. J. Am. Statis. Assn. 43, 523 (1948)CrossRefGoogle Scholar
  22. 22.
    Robb, J.: Brave New War. Wiley, New York (2007)Google Scholar
  23. 23.
    Tanachaiwiwat, S., Helmy, A.: VACCINE: War of the Worms in Wired and Wireless Networks. Technical Report CS 05-859, University of Southern California, California (2005)Google Scholar
  24. 24.
    U.S. Army Insurgency Doctrine: (2005)
  25. 25.
    Yano, S.: New Lanchester strategy. Lanchester, California, (1996)Google Scholar
  26. 26.
    Wu G., Yan, S.: Virus dynamics in vivo. Am. J. Infect. Dis. 1, 156, (2005); Theoretical Analysis of Drug Treatment in Haematological Disease Using Lanchester (Osipov) Linear Law Comp. Clin. Pathol. 11, 178 (2005)Google Scholar
  27. 27.
    Zhao, Z., Bohorquez, J.C., Dixon, A., Johnson, N.F.: Anomalously Slow Attrition Times for Asymmetric Populations with Internal Group Dynamics. Phys. Rev. Lett. 103, 148701 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alex Dixon
    • 1
  • Zhenyuan Zhao
    • 2
  • Juan Camilo Bohorquez
    • 3
  • Russell Denney
    • 2
  • Neil Johnson
    • 2
  1. 1.Cavendish LaboratoryCambridge UniversityCambridgeU.K.
  2. 2.Physics DepartmentUniversity of MiamiCoral GablesUSA
  3. 3.CEiBA Complex Systems Resarch Center and Industrial Engineering DepartmentUniversidad de los AndesBogotaColombia

Personalised recommendations