Advertisement

Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

  • Emiliano Cristiani
  • Benedetto Piccoli
  • Andrea Tosin
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from nonlocality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

Keywords

Animal Group Globular Cluster Group Mate Behavioral Rule Topological Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.MATHGoogle Scholar
  2. 2.
    I. Aoki. An analysis of the schooling behavior of fish: internal organization and communication process. Bull. Ocean Res. Inst. Univ. Tokyo, 12:1–65, 1980.MathSciNetGoogle Scholar
  3. 3.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. P. Natl. Acad. Sci. USA, 105(4):1232–1237, 2008.CrossRefGoogle Scholar
  4. 4.
    N. Bellomo and C. Dogbé. On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci., 18(suppl.):1317–1345, 2008.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Canuto, F. Fagnani, and P. Tilli. A Eulerian approach to the analysis of rendez-vous algorithms. In Proceedings of the 17th IFAC World Congress (IFAC’08), pages 9039–9044. Seoul, Korea, July 2008.Google Scholar
  6. 6.
    J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1): 218–236, 2010.CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud. Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B, 64(3):451–456, 2008.CrossRefGoogle Scholar
  8. 8.
    R. M. Colombo and M. D. Rosini. Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci., 28(13):1553–1567, 2005.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. M. Colombo and M. D. Rosini. Existence of nonclassical solutions in a pedestrian flow model. Nonlinear Anal. Real, 10(5):2716–2728, 2009.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. Coscia and C. Canavesio. First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci., 18(suppl.):1217–1247, 2008.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433:513–516, 2005.CrossRefGoogle Scholar
  12. 12.
    I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks. Collective memory and spatial sorting in animal groups. J. Theor. Biol., 218(1):1–11, 2002.CrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol., to appear.Google Scholar
  14. 14.
    F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Autom. Contrl., 52(5):852–862, 2007.CrossRefMathSciNetGoogle Scholar
  15. 15.
    L. Edelstein-Keshet. Mathematical models of swarming and social aggregation. In Proceedings of the 2001 International Symposium on Nonlinear Theory and Its Applications, pages 1–7, Miyagi, Japan, 2001.Google Scholar
  16. 16.
    G. Grégoire, H. Chaté, and Y. Tu. Moving and staying together without a leader. Physica D, 181(3–4):157–170, 2003.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Gueron, S. A. Levin, and D. I. Rubenstein. The dynamics of herds: from individuals to aggregations. J. Theor. Biol., 182(1):85–98, 1996.CrossRefGoogle Scholar
  18. 18.
    S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models, 1(3):415–435, 2008.MATHMathSciNetGoogle Scholar
  19. 19.
    D. Helbing, I. J. Farkas, P. Molnár, and T. Vicsek. Simulation of pedestrian crowds in normal and evacuation situations. In M. Schreckenberg and S. D. Sharma, editors, Pedestrian and Evacuation Dynamics, pages 21–58. Springer, Berlin, 2002.Google Scholar
  20. 20.
    D. Helbing and A. Johansson. Quantitative agent-based modeling of human interactions in space and time. In F. Amblard, editor, Proceedings of The Fourth Conference of the European Social Simulation Association (ESSA2007), pages 623–637. September 2007.Google Scholar
  21. 21.
    D. Helbing and A. Johansson. Pedestrian, crowd, and evacuation dynamics. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, volume 16, pages 6476–6495. Springer New York, 2009.Google Scholar
  22. 22.
    D. Helbing, A. Johansson, J. Mathiesen, M. H. Jensen, and A. Hansen. Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett., 97(16):168001–1–4, 2006.CrossRefGoogle Scholar
  23. 23.
    D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay. Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3):361–383, 2001.CrossRefGoogle Scholar
  24. 24.
    D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár. Active walker model for the formation of human and animal trail systems. Phys. Rev. E, 56(3): 2527–2539, 1997.CrossRefGoogle Scholar
  25. 25.
    C. K. Hemelrijk and H. Hildenbrandt. Self-organized shapes and frontal density of fish schools. Ethology, 114(3):245–254, 2008.CrossRefGoogle Scholar
  26. 26.
    F. H. Heppner. Avian flight formations. Bird-Banding, 45(2):160–169, 1974.Google Scholar
  27. 27.
    S. P. Hoogendoorn and P. H. L. Bovy. State-of-the-art of vehicular traffic flow modelling. J. Syst. Cont. Eng., 215(4):283–303, 2001.Google Scholar
  28. 28.
    S. P. Hoogendoorn and W. Daamen. Self-organization in pedestrian flow. In Traffic and Granular Flow ’03, pages 373–382. Springer, Berlin Heidelberg, 2005.CrossRefGoogle Scholar
  29. 29.
    S. P. Hoogendoorn, W. Daamen, and P. H. L. Bovy. Extracting microscopic pedestrian characteristics from video data. In Transportation Research Board annual meeting 2003, pages 1–15. National Academy Press, Washington DC, 2003.Google Scholar
  30. 30.
    R. L. Hughes. A continuum theory for the flow of pedestrians. Transport. Res. B, 36(6):507–535, 2002.CrossRefGoogle Scholar
  31. 31.
    R. L. Hughes. The flow of human crowds. Annu. Rev. Fluid Mech., 35:169–182, 2003.CrossRefGoogle Scholar
  32. 32.
    A. Huth and C. Wissel. The simulation of the movement of fish schools. J. Theor. Biol., 156(3):365–385, 1992.CrossRefGoogle Scholar
  33. 33.
    Y. Inada and K. Kawachi. Order and flexibility in the motion of fish schools. J. Theor. Biol., 214(3):371–387, 2002.CrossRefGoogle Scholar
  34. 34.
    J. Krause and G. D. Ruxton. Living in Groups. Oxford University Press, Oxford, 2002.Google Scholar
  35. 35.
    H. Kunz and C. K. Hemelrijk. Artificial fish schools: collective effects of school size, body size, and body form. Artificial Life, 9(3):237–253, 2003.CrossRefGoogle Scholar
  36. 36.
    Y.-X. Li, R. Lukeman, and L. Edelstein-Keshet. Minimal mechanisms for school formation in self-propelled particles. Physica D, 237(5):699–720, 2008.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    R. Lukeman, Y.-X. Li, and L. Edelstein-Keshet. A conceptual model for milling formations in biological aggregates. Bull. Math. Biol., 71(2):352–382, 2009.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., to appear.Google Scholar
  39. 39.
    B. Maury and J. Venel. Handling of contacts in crowd motion simulations. In Traffic and Granular Flow ’07, volume 1, pages 171–180. Springer Berlin Heidelberg, 2007.Google Scholar
  40. 40.
    B. Maury and J. Venel. Un modèle de mouvements de foule. In Esaim: Proceedings, volume 18, pages 143–152, 2007.Google Scholar
  41. 41.
    B. Maury and J. Venel. A mathematical framework for a crowd motion model. C. R. Math. Acad. Sci. Paris, 346(23–24):1245–1250, 2008.MATHMathSciNetGoogle Scholar
  42. 42.
    J. K. Parrish, S. V. Viscido, and D. Grunbaum. Self-organized fish schools: an examination of emergent properties. Biol. Bull., 202(3):296–305, 2002.CrossRefGoogle Scholar
  43. 43.
    B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., to appear.Google Scholar
  44. 44.
    B. Piccoli and A. Tosin. Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn., 21(2):85–107, 2009.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, volume 22, pages 9727–9749. Springer,New York, 2009.CrossRefGoogle Scholar
  46. 46.
    E. Schröedinger. What is Life? Mind and Matter. Cambridge University Press, Cambridge, 1967.Google Scholar
  47. 47.
    C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006.CrossRefMathSciNetGoogle Scholar
  48. 48.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75(6): 1226–1229, 1995.CrossRefGoogle Scholar
  49. 49.
    C. Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002.CrossRefGoogle Scholar
  50. 50.
    C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.Google Scholar
  51. 51.
    K. Warburton and J. Lazarus. Tendency-distance models of social cohesion in animal groups. J. Theor. Biol., 150(4):473–488, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Emiliano Cristiani
    • 1
    • 2
  • Benedetto Piccoli
    • 2
  • Andrea Tosin
    • 3
  1. 1.CEMSACUniversità degli Studi di SalernoFiscianoItaly
  2. 2.IAC-CNRRomeItaly
  3. 3.Department of MathematicsPolitecnico di TorinoTurinItaly

Personalised recommendations