On the modelling of vehicular traffic and crowds by kinetic theory of active particles

Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


This paper deals with developments and applications of the mathematical kinetic and stochastic games theory to the modelling of the dynamics of vehicular traffic and pedestrian crowds. The mathematical approach is focused on the derivation of the evolution equation for the probability distribution over the state, at the microscopic scale, of vehicles and pedestrians. Models take into account their heterogeneous behaviour.


Kinetic Theory Mathematical Structure Active Particle Stochastic Game Continuity Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., and Alt, W., Stochastic dynamics of viscolelastic skeins: condensation waves and continuum limit, Math. Mod. Meth. Appl. Sci., 18, 1149–1192 (2008).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arlotti, L., Bellomo, N., and De Angelis, E., Generalized kinetic (Boltzmann) models: mathematical structures and applications, Math. Mod. Meth. Appl. Sci., 12, 567–591 (2002).MATHCrossRefGoogle Scholar
  3. 3.
    Aw, A., Klar, A., Materne, T., and Rascle, M., Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63, 259–278 (2002).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., and Zdravkovic, V., Interaction ruling animal collective behaviour depends on topological rather than metric distance: evidence from a field study, Proc. Nat. Acad. Sci., 105, 1232–1237 (2008).CrossRefGoogle Scholar
  5. 5.
    Bellomo, N., Modelling Complex Living Systems – A Kinetic Theory and Stochastic Game Approach, Birkäuser, Boston, (2008).Google Scholar
  6. 6.
    Bellomo, N., Bianca, C., and Delitala, M., Complexity analysis and mathematical tools towards the modelling of living systems, Phys. Life Rev., 6, 144–176 (2009).CrossRefGoogle Scholar
  7. 7.
    Bellomo, N., and Brezzi, F., Traffic, crowds, and swarms, Math. Mod. Meth. Appl. Sci., 18(Supplement), 1145–1148 (2008).Google Scholar
  8. 8.
    Bellomo, N., and Delitala, M., From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Phys. Life Rev., 5, 183–206 (2008).CrossRefGoogle Scholar
  9. 9.
    Bellomo, N., and Dogbé, C., On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. Sci., 18(Supplement), 1317–1345 (2008).Google Scholar
  10. 10.
    Bellomo, N., and Dogbé, C., On The Modelling of Traffic and Crowds – A Survey of Models, Speculations, and Perspectives, SIAM Review, to appear.Google Scholar
  11. 11.
    Bellomo, N., Marasco, A., and Romano, A., From the modelling of driver’s behavior to hydrodynamic models and problems of traffic flow, Nonlinear Anal. RWA, 3, 339–363 (2002).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Berthelin, F., Degond, P., Delitala, M., and Rascle, M., A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187, 185–220 (2008).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Berthelin, F., Degond, P., Le Blanc, V., Moutari, S., Rascle, M., and Royer, J., A traffic-flow model with constraints for the modelling of traffic jams, Math. Mod. Meth. Appl. Sci., 18(Supplement), 1269–1298 (2008).Google Scholar
  14. 14.
    Bertozzi, A.L., Grunbaum, D., Krishnaprasad, P.S., and Schwartz, I., Swarming by nature and by design, www.ipam.ucla.edu/programs.swa2006/, (2006).
  15. 15.
    Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, Oxford, (1999).MATHGoogle Scholar
  16. 16.
    Bianca, C., On the modelling of space dynamics in the kinetic theory for active particles, Mathl. Comp. Modelling, (2009), doi 10.1016/j.mcm.2009.08.044.Google Scholar
  17. 17.
    Bonzani, I., and Gramani, L., Modelling and simulations of multilane traffic flow by kinetic theory methods, Comput. Math. Appl., 56, 2418–2428 (2008).MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bonzani, I., and Gramani, L., Critical analysis and perspectives on the hydrodynamic approach for the mathematical theory of vehicular traffic, Mathl. Comput. Model., 50, 526–561 (2009).MATHCrossRefGoogle Scholar
  19. 19.
    Bonzani, I., and Mussone, L., From the discrete kinetic theory of vehicular traffic flow to computing the velocity distribution at equilibrium, Mathl. Comput. Modelling, 49, 610–616 (2009).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bonzani, I., and Mussone, L., On the derivation of the velocity and fundamental traffic flow diagram from the modelling of the vehicle-driver behaviour, Mathl. Comput. Modelling, 50, 1107–1112 (2009).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Buchmuller, S., and Weidman, U., Parameters of pedestrians, pedestrian traffic and walking facilities, ETH Report Nr.132, October, (2006).Google Scholar
  22. 22.
    Chjang, Y., D’Orsogna, M., Marthaler, D., Bertozzi, A., and Chaves, L., State transition and the continuum limit for 2D interacting, self-propelled particles system, Physica D, 232, 33–47 (2007).CrossRefMathSciNetGoogle Scholar
  23. 23.
    Carillo, J.A., D’Orsogna, M.R., and Panferov, V., Double milling in self-propelled sawrms form kinetic theory, Kinetic Relat. Models, 2, 363–378 (2009).CrossRefGoogle Scholar
  24. 24.
    Cattani, C., and Ciancio, A., Hybrid two scales mathematical tools for active particles modeling complex systems with learing hiding dynamics, Math. Mod. Meth. Appl. Sci., 17, 171–188 (2007).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Coscia, V., and Canavesio, C., First order macroscopic modelling of human crowds, Math. Mod. Meth. Appl. Sci., 18(Supplment), 1217–1247 (2008).Google Scholar
  26. 26.
    Coscia, V., Delitala, M., and Frasca, P., On the mathematical theory of vehicular traffic flow models II. Discrete velocity kinetic models, Int. J. Non-linear Mechanics, 42, 411–421 (2007).Google Scholar
  27. 27.
    Cucker, F., and Jiu-Gang Dong, On the critical exponent for flocks under hierarchical leadership, Math. Mod. Meth. Appl. Sci., 19, 1391–1404 (2009).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Cucker, F., and Smale, S., Emergent behavior in flocks, IEEE Trans. Auto. Contrl., 52, 853–862 (2007).MathSciNetGoogle Scholar
  29. 29.
    Daganzo, C.F., Requiem for second order fluid approximations of traffic flow, Transp. Res. B, 29B, 277–286 (1995).CrossRefGoogle Scholar
  30. 30.
    Degond, P., and Motsch, S., Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18, 1193–1217 (2008).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Degond, P., and Delitala, M., Modelling and simulation of vehicular traffic jam formation, Kinetic Relat. Models, 1, 279–293 (2008).MATHMathSciNetGoogle Scholar
  32. 32.
    Delitala, M., and Tosin, A., Mathematical modelling of vehicular traffic: A discrete kinetic theory approach, Math. Mod. Meth. Appl. Sci., 17, 901–932 (2007).MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Gramani, L., On the modeling of granular traffic flow by the kinetic theory for active particles. Trend to equilibrium and macroscopic behaviour, Int. J. Non-linear Mech., 44, 263–268 (2009).Google Scholar
  34. 34.
    Helbing, D., Traffic and related self-driven many-particle systems, Rev. Mod. Phys. 73, 1067–1141 (2001).CrossRefGoogle Scholar
  35. 35.
    Helbing, D., and Molnár, P., Social force model for pedestrian dynamics. Phys. Rev. E, 51, 4282–4286 (1995).CrossRefGoogle Scholar
  36. 36.
    Helbing, D., and Vicsek, T., Optimal self-Organization, New J. Phys., 13, 13.1–13.17 (1999).Google Scholar
  37. 37.
    Helbing, D., Farkas, I., and Vicsek, T., Simulating dynamical feature of escape panic, Nature, 407, 487–490 (2000).CrossRefGoogle Scholar
  38. 38.
    Henderson, L.F., The statistics of crowd fluids, Nature, 229, 381–383 (1971).CrossRefGoogle Scholar
  39. 39.
    Henderson, L.F., On the fluid mechanic of human crowd motion, Transp. Res., 8, 509–515 (1975).Google Scholar
  40. 40.
    Hughes, R.L., The flow of human crowds, Annual Rev. Fluid Mech., 35, 169–183 (2003).CrossRefGoogle Scholar
  41. 41.
    Kerner, B.S., The Physics of Traffic, Springer, New York, Berlin, (2004).Google Scholar
  42. 42.
    Kerner, B.S., and Konhäuser, P., Cluster effect in initially homogeneous traffic flow, Phys. Rev. E., 48, 2335–2338 (1993).CrossRefGoogle Scholar
  43. 43.
    Kerner, B.S., and Konhäuser, P., Structure and parameters of clusters in traffic flow, Phys. Rev. E, 50, 54–83 (1994).CrossRefGoogle Scholar
  44. 44.
    Kerner, B.S., and Rehborn, H., Experimental properties of complexity in traffic flow, Phys. Rev. E, 53, 4275–4278 (1996).CrossRefGoogle Scholar
  45. 45.
    Klar, A., Küne, R.D., and Wegener R., Mathematical models for vehicular traffic. Surv. Math. Ind., 6, 215–239 (1996).MATHGoogle Scholar
  46. 46.
    Klar, A., and Wegener, R., Enskog-like kinetic models for vehicular traffic, J. Statist. Phys., 87, 91–114 (1997).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Klar, A., and Wegener, R., Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60, 1749–1766 (2000).MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Klar, A., and Wegener, R., Kinetic traffic flow models, in Modeling in Applied Sciences: A Kinetic Theory Approach, Bellomo N. and Pulvirenti M. Eds., Birkhäuser, Boston, (2000).Google Scholar
  49. 49.
    Lo Schiavo, M., A Personalized Kinetic model of traffic flow, Mathl. Comput. Modelling, 35, 607–622 (2002).Google Scholar
  50. 50.
    Nelson, P., Traveling-wave solutions of the diffusively corrected kinematic-wave model, Mathl. Comput. Modelling, 35, 561–580 (2002).MATHCrossRefGoogle Scholar
  51. 51.
    Nelson, P., and Sopasakis, P., The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentration, Transp. Res. B, 32, 589–603 (1998).CrossRefGoogle Scholar
  52. 52.
    Paveri Fontana, S., On Boltzmann like treatments for traffic flow, Transp. Res., 9, 225–235 (1975).Google Scholar
  53. 53.
    Perthame, B., Mathematical tools for kinetic equations, Bull. Am. Math. Soc., 41, 205–244 (2004).MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Piccoli, B., and Tosin, A., Pedestrian flows in bounded domains with obstacles, Cont. Mech. Thermodyn., 21, 85–117 (2009).MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Prigogine, I., and Herman, R., Kinetic Theory of Vehicular Traffic. Elsevier, New York (1971).MATHGoogle Scholar
  56. 56.
    Short, M.B., D’orsogna, M.R., Pasteur, V.P., Tita, E.E., Bratingham, P.J., Bertozzi, A.L., and Chayes, L.B., A statistical model of criminal behavior, Math. Mod. Meth. Appl. Sci., 18 (Supplement), 1249–1268 (2008).Google Scholar
  57. 57.
    Topas, C.M., and Bertozzi, A., Swarming patterns in a two dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65, 152–174 (2005).CrossRefGoogle Scholar
  58. 58.
    Tyagi, V., Darbha, S., and Rajagopal, K., A dynamical system approach based on averaging to model the macroscopic flow of freeway traffic, Nonlinear Analysis Hybrid Syst., 2, 590–612 (2008).MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Tosin, A., From the generalized kinetic theory to discrete velocity modeling of vehicular traffic. A stochastic game approach, Appl. Mathl. Lett., 22, 1122–1125 (2009).Google Scholar
  60. 60.
    Venuti, F., Bruno, L., and Bellomo, N., Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Math. Comput. Modelling, 45, 252–269 (2007).MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Venuti, F., Bruno, L., Crowd structure interaction in lively footbridges under syncronous lateral excitation: A literature review, Phys. Life Rev., 6, 176–206 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di TorinoTorinoItaly
  2. 2.University Cadi Ayyad, Ecole Nationale des Sciences AppliquéesSafiMarocco

Personalised recommendations