Modelling opinion formation by means of kinetic equations

  • Laurent Boudin
  • Francesco Salvarani
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.New opinions are always suspected, and usually opposed, without any other reason but because they are not already common.John Locke, An Essay Concerning Human Understanding


Kinetic Equation Boltzmann Equation Opinion Formation Electoral Competition Opinion Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Aletti, G. Naldi, and G. Toscani. First-order continuous models of opinion formation. SIAM J. Appl. Math., 67(3):837–853 (electronic), 2007.Google Scholar
  2. 2.
    L. Arlotti, N. Bellomo, and E. De Angelis. Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math. Models Methods Appl. Sci., 12(4):567–591, 2002.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhys. Lett., 69:671–677, 2005.CrossRefGoogle Scholar
  4. 4.
    E. Ben-Naim, P. L. Krapivsky, and S. Redner. Bifurcation and patterns in compromise processes. Phys. D, 183(3–4):190–204, 2003.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner. Unity and discord in opinion dynamics. Phys. A, 330(1–2):99–106, 2003. Randomness and complexity (Eilat, 2003).Google Scholar
  6. 6.
    M.-L. Bertotti and M. Delitala. On the qualitative analysis of the solutions of a mathematical model of social dynamics. Appl. Math. Lett., 19(10):1107–1112, 2006.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M.-L. Bertotti and M. Delitala. Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Anal. Real World Appl., 9(1):183–196, 2008.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M.-L. Bertotti and M. Delitala. On a discrete generalized kinetic approach for modelling persuader’s influence in opinion formation processes. Math. Comput. Modelling, 48(7–8):1107–1121, 2008.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M.-L. Bertotti and M. Delitala. On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders. Math. Models Methods Appl. Sci., 18(6):913–934, 2008.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. A. Bird. Molecular gas dynamics and the direct simulation of gas flows, volume 42 of Oxford Engineering Science Series. The Clarendon Press Oxford University Press, New York, 1995. Corrected reprint of the 1994 original.Google Scholar
  11. 11.
    L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte Akad. Wiss., 66:275–370, 1873.Google Scholar
  12. 12.
    L. Boltzmann. Lectures on gas theory. Translated by Stephen G. Brush. University of California Press, Berkeley, 1964.Google Scholar
  13. 13.
    L. Boudin, A. Mercier, and F. Salvarani. Conciliatory and contradictory dynamics in opinion formation. Technical report, Lab. J.-L. Lions, UPMC, 2009.Google Scholar
  14. 14.
    L. Boudin, R. Monaco, and F. Salvarani. A kinetic model for multidimensional opinion formation. Phys. Rev. E, 81, 036109, 2010.CrossRefGoogle Scholar
  15. 15.
    L. Boudin and F. Salvarani. A kinetic approach to the study of opinion formation. M2AN Math. Model. Numer. Anal., 43(3):507–522, 2009.Google Scholar
  16. 16.
    L. Boudin and F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinet. Relat. Models, 2(3):433–449, 2009.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    C. Buet, S. Cordier, and P. Degond. Regularized Boltzmann operators. Comput. Math. Appl., 35(1–2):55–74, 1998. Simulation methods in kinetic theory.Google Scholar
  18. 18.
    M. Campiti, G. Metafune, and D. Pallara. Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum, 57(1):1–36, 1998.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    K. M. Case and P. F. Zweifel. Linear transport theory. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967.Google Scholar
  20. 20.
    C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591–646, 2009.CrossRefGoogle Scholar
  21. 21.
    C. Cercignani. The Boltzmann equation and its applications, volume 67 of Applied Mathematical Sciences. Springer-Verlag, New York, 1988.MATHGoogle Scholar
  22. 22.
    C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.MATHGoogle Scholar
  23. 23.
    S. Chandrasekhar. Radiative transfer. Dover Publications Inc., New York, 1960.Google Scholar
  24. 24.
    W. Cholewa. Aggregation of fuzzy opinions—an axiomatic approach. Fuzzy Sets Syst., 17(3):249–258, 1985.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    V. Comincioli, L. Della Croce, and G. Toscani. A Boltzmann-like equation for choice formation. Kinet. Relat. Models, 2(1):135–149, 2009.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Adv. Complex Syst., 3:87–98, 2000.CrossRefGoogle Scholar
  27. 27.
    P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comp., 53(188):485–507, 1989.Google Scholar
  28. 28.
    P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. II. The anisotropic case. Math. Comp., 53(188):509–525, 1989.Google Scholar
  29. 29.
    P. Degond, L. Pareschi, and G. Russo, editors. Modeling and computational methods for kinetic equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA, 2004.Google Scholar
  30. 30.
    L. Desvillettes and F. Salvarani. Characterization of collision kernels. M2AN Math. Model. Numer. Anal., 37(2):345–355, 2003.Google Scholar
  31. 31.
    B. Düring, P. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465(2112):2687–3708, 2009.CrossRefGoogle Scholar
  32. 32.
    M. Fansten. Introduction à une théorie mathématique de l’opinion. Ann. I.N.S.E.E., 21:3–55, 1976.Google Scholar
  33. 33.
    S. French. Updating of belief in the light of someone else’s opinion. J. Royal Statist. Soc. Ser. A, 143(1):43–48, 1980.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    S. Galam. Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”. Phys. A, 333(1–4):453–460, 2004.CrossRefMathSciNetGoogle Scholar
  35. 35.
    S. Galam. Stability of leadership in bottom-up hierarchical organizations. J. Soc. Complex., 2(2):62–75, 2006.Google Scholar
  36. 36.
    S. Galam. From 2000 Bush-Gore to 2006 Italian elections: voting at fifty-fifty and the contrarian effect. Qual. Quant., 41(4):579–589, 2007.CrossRefGoogle Scholar
  37. 37.
    S. Galam. Sociophysics: a review of Galam models. Int. J. Mod. Phys. C, 19(4):409–440, 2008.MATHCrossRefGoogle Scholar
  38. 38.
    S. Galam, Y. Gefen, and Y. Shapir. Sociophysics: a new approach of sociological collective behaviour. i. Mean-behaviour description of a strike. J. Math. Sociol., 9:1–23, 1982.Google Scholar
  39. 39.
    S. Galam and S. Moscovici. Towards a theory of collective phenomena: consensus and attitude changes in groups. Eur. J. Soc. Psychol., 21:49–74, 1991.CrossRefGoogle Scholar
  40. 40.
    S. Galam and J.-D. Zucker. From individual choice to group decision-making. Phys. A, 287(3–4):644–659, 2000. Economic dynamics from the physics point of view (Bad Honnef, 2000).Google Scholar
  41. 41.
    G. Gallavotti. Rigorous theory of the boltzmann equation in the lorentz gas. Technical report, Nota interna n. 358, Istituto di Fisica, Università di Roma, 1973.Google Scholar
  42. 42.
    R. Gatignol. Théorie cinétique des gaz à répartition discrète de vitesses. Springer Verlag, Berlin, 1975.Google Scholar
  43. 43.
    S. Gekle, L. Peliti, and S. Galam. Opinion dynamics in a three-choice system. Eur. Phys. J. B, 45:569–575, 2005.CrossRefGoogle Scholar
  44. 44.
    C. Genest, S. Weerahandi, and J. V. Zidek. Aggregating opinions through logarithmic pooling. Theory Decision, 17(1):61–70, 1984.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    D.B. Goldstein. Discrete-velocity collision dynamics for polyatomic molecules. Phys. Fluids A, 4(8):1831–1839, 1992.CrossRefGoogle Scholar
  46. 46.
    D. Helbing. Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models. Phys. A, 196:546–573, 1993.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    D. Helbing. Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Phys. A, 193:241–258, 1993.CrossRefMathSciNetGoogle Scholar
  48. 48.
    D. Helbing. A mathematical model for the behavior of individuals in a social field. J. Math. Sociol., 19(3):189–219, 1994.Google Scholar
  49. 49.
    A. B. Huseby. Combining opinions in a predictive case. In Bayesian statistics, 3 (Valencia, 1987), Oxford Sci. Publ., pages 641–651. Oxford University Press, New York, 1988.Google Scholar
  50. 50.
    R. Illner and M. Pulvirenti. Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Comm. Math. Phys., 105(2):189–203, 1986.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    R. Illner and M. Pulvirenti. Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result. Comm. Math. Phys., 121(1):143–146, 1989.Google Scholar
  52. 52.
    T. Inamuro and B. Sturtevant. Numerical study of discrete-velocity gases. Phys. Fluids A, 2(12):2196–2203, 1990.MATHCrossRefGoogle Scholar
  53. 53.
    E. Jäger and L. A. Segel. On the distribution of dominance in populations of social organisms. SIAM J. Appl. Math., 52(5):1442–1468, 1992.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    G. S. Jowett and V. O’Donnell. Propaganda and persuasion. Sage publications, Beverley Hills, CA (London), fourth edition, 2005.Google Scholar
  55. 55.
    M. Kac. Probability and related topics in physical sciences, volume 1957 of With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo. Interscience Publishers, London-New York, 1959.Google Scholar
  56. 56.
    B. K. Kale. On tests of hypotheses regarding the change of opinions. Ann. Soc. Sci. Bruxelles Sér. I, 88:305–312, 1974.MATHMathSciNetGoogle Scholar
  57. 57.
    S. Kaniel and M. Shinbrot. The Boltzmann equation. II. Some discrete velocity models. J. Mécanique, 19(3):581–593, 1980.Google Scholar
  58. 58.
    O. E. Lanford III. Time evolution of large classical systems. In Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), pages 1–111. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975.Google Scholar
  59. 59.
    T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes, volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.MATHGoogle Scholar
  60. 60.
    M. Lo Schiavo. Population kinetic models for social dynamics: dependence on structural parameters. Comput. Math. Appl., 44(8–9):1129–1146, 2002.MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    M. Lo Schiavo. The modelling of political dynamics by generalized kinetic (Boltzmann) models. Math. Comput. Modelling, 37(3–4):261–281, 2003.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    M. Lo Schiavo. Kinetic modelling and electoral competition. Math. Comput. Modelling, 42(13):1463–1486, 2005.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    M. Lo Schiavo. A dynamical model of electoral competition. Math. Comput. Modelling, 43(11–12):1288–1309, 2006.MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    E. Marchi. A game-theoretical approach to some situations in opinion making. Math. Biosci., 2:85–109, 1968.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    R. Monaco and L. Preziosi. Fluid dynamic applications of the discrete Boltzmann equation, volume 3 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJ, 1991.MATHGoogle Scholar
  66. 66.
    F. J. Montero de Juan. A note on Fung-Fu’s theorem. Fuzzy Sets Syst., 17(3):259–269, 1985.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    F. J. Montero de Juan. Aggregation of fuzzy opinions in a nonhomogeneous group. Fuzzy Sets and Systems, 25(1):15–20, 1988.MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn., 49(5):2042–2049, 1980.Google Scholar
  69. 69.
    K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. II. Multicomponent gas mixtures. J. Phys. Soc. Jpn., 49(5):2050–2054, 1980.Google Scholar
  70. 70.
    T. Platkowski and R. Illner. Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev., 30(2):213–255, 1988.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    M. Pulvirenti. Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum. Commun. Math. Phys., 113(1):79–85, 1987.MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    F. Rogier and J. Schneider. A direct method for solving the Boltzmann equation. Trans. Theory Statist. Phys., 23(1–3):313–338, 1994.MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    F. Slanina and H. Lavic̆ka. Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35:279–288, 2003.Google Scholar
  74. 74.
    E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys., 149(2):201–220, 1999.MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    V. Sood, T. Antal, and S. Redner. Voter models on heterogeneous networks. Phys. Rev. E, 77(4):041121, 2008.Google Scholar
  76. 76.
    K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community. Int. J. Mod. Phys. C, 11:1157–1166, 2000.CrossRefGoogle Scholar
  77. 77.
    G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481–496, 2006.MATHMathSciNetGoogle Scholar
  78. 78.
    C. Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002.Google Scholar
  79. 79.
    W. Weidlich. The statistical description of polarization phenomena in society. Br. J. Math. Stat. Psychol., 24:251–266, 1971.MATHGoogle Scholar
  80. 80.
    W. Weidlich and G. Haag, editors. Interregional migration: dynamic theory and comparative analysis. Springer-Verlag, Berlin, 1988.Google Scholar
  81. 81.
    E. Wild. On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47:602–609, 1951.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.UMR 7598 LJLLUPMC Univ Paris 06ParisFrance
  2. 2.UMR 7598 LJLLCNRSParisFrance
  3. 3.REO Project-teamINRIA Paris-RocquencourtLe Chesnay CedexFrance
  4. 4.Dipartimento di Matematica F. CasoratiUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations