Advertisement

Agent-based models of economic interactions

  • Anirban Chakraborti
  • Guido Germano
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Summary

The interdisciplinary field of econophysics has enjoyed recently a surge of activities especially with numerous agent-based models, which have led to a substantial development of this field. We review three main application areas of agent-based models in econophysics: order books, distributions of wealth in conservative economies, and minority games.

Keywords

Stylize Fact Hurst Exponent Limit Order Wealth Distribution Strategy Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to F. Abergel, A. Chatterjee, E. Heinsalu, I. Muni Toke, M.Patriarca, and V. Yakovenko for critical discussions and to all the collaborators whose work has been described.

References

  1. 1.
    G.J. Stigler, Public regulation of the securities markets, Journal of Business 37 (1964) 117–142.CrossRefGoogle Scholar
  2. 2.
    M.B. Garman, Market microstructure, Journal of Financial Economics 3 (1976) 257–275.CrossRefGoogle Scholar
  3. 3.
    B.LeBaron, Agent-based computational finance, Handbook of Computational Economics 2 (2006) 1187–1233.CrossRefGoogle Scholar
  4. 4.
    R.Cont, J.-P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroeconomic Dynamics 4 (2000) 170–196.MATHCrossRefGoogle Scholar
  5. 5.
    M.Raberto, S.Cincotti, S.M. Focardi, M.Marchesi, Agent-based simulation of a financial market, Physica A 299 (2001) 319–327.MATHCrossRefGoogle Scholar
  6. 6.
    T.Lux, M.Marchesi, Volatility clustering in financial markets, International Journal of Theoretical and Applied Finance 3 (2000) 675–702.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.Chiarella, G.Iori, A simulation analysis of the microstructure of double auction markets, Quantitative Finance 2 (2002) 346–353.CrossRefGoogle Scholar
  8. 8.
    P.Bak, M.Paczuski, M.Shubik, Price variations in a stock market with many agents, Physica A 246 (1997) 430–453.CrossRefGoogle Scholar
  9. 9.
    S.Maslov, Simple model of a limit order-driven market, Physica A 278 (2000) 571–578.CrossRefGoogle Scholar
  10. 10.
    F.Slanina, Mean-field approximation for a limit order driven market model, Physical Review E 64 (2001) 056136.CrossRefGoogle Scholar
  11. 11.
    B.Biais, P.Hillion, C.Spatt, An empirical analysis of the limit order book and the order flow in the Paris Bourse, Journal of Finance (1995) 1655–1689.CrossRefGoogle Scholar
  12. 12.
    D.Challet, R.Stinchcombe, Analyzing and modeling 1+1d markets, Physica A 300 (2001) 285–299.MATHCrossRefGoogle Scholar
  13. 13.
    J.-P. Bouchaud, M.Mézard, M.Potters, Statistical properties of stock order books: empirical results and models, Quantitative Finance 2 (2002) 251.CrossRefGoogle Scholar
  14. 14.
    T.Preis, S.Golke, W.Paul, J.J. Schneider, Statistical analysis of financial returns for a multiagent order book model of asset trading, Physical Review E 76 (2007) 016108.CrossRefGoogle Scholar
  15. 15.
    S.Mike, J.D. Farmer, An empirical behavioral model of liquidity and volatility, Journal of Economic Dynamics and Control 32 (2008) 200–234.CrossRefGoogle Scholar
  16. 16.
    F.Slanina, Critical comparison of several order-book models for stock-market fluctuations, The European Physical Journal B 61 (2008) 225–240.MathSciNetCrossRefGoogle Scholar
  17. 17.
    P.Erdos, A.Renyi, On the evolution of random graphs, Publications of the Mathmatical Institute of Hung. Acadamic Sciences 5 (1960) 17–61.MathSciNetGoogle Scholar
  18. 18.
    A.Kirman, On mistaken beliefs and resultant equilibria, in: R.Frydman, E.S.Phelps (Eds.), Individual Forecasting and Aggregate Outcomes: Rational Expectations Examined, Cambridge University Press, Cambridge, UK, 1983, pp.147–166.Google Scholar
  19. 19.
    E.Smith, J.D. Farmer, L.Gillemot, S.Krishnamurthy, Statistical theory of the continuous double auction, Quantitative Finance 3 (2003) 481–514.MathSciNetCrossRefGoogle Scholar
  20. 20.
    V.Pareto, Cours d’economie politique, Rouge, Lausanne, 1897.Google Scholar
  21. 21.
    R.Gibrat, Les inégalités économiques, Sirey, Paris, 1931.MATHGoogle Scholar
  22. 22.
    A.Dragulescu, V.M. Yakovenko, Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States, Physica A 299 (2001) 213–221.MATHCrossRefGoogle Scholar
  23. 23.
    A.Dragulescu, V.M. Yakovenko, Evidence for the exponential distribution of income in the USA, The European Physical Journal B 20 (2001) 585.CrossRefGoogle Scholar
  24. 24.
    Y.Fujiwara, W.Souma, H.Aoyama, T.Kaizoji, M.Aoki, Growth and fluctuations of personal income, Physica A 321 (2003) 598–604.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    V.M. Yakovenko, J.J.BarkleyRosser, Statistical mechanics of money, wealth, and income, Reviews of Modern Physics 81 (2009) 1703–1725.CrossRefGoogle Scholar
  26. 26.
    T.Lux, Emergent statistical wealth distributions in simple monetary exchange models: A critical review, in: A.Chatterjee, S.Yarlagadda, B.K. Chakrabarti (Eds.), Econophysics of Wealth Distributions, Springer, Milan, 2005, p.51.CrossRefGoogle Scholar
  27. 27.
    A.Chatterjee, B.K. Chakrabarti, Kinetic exchange models for income and wealth distributions, The European Physical Journal B 60 (2007) 135.CrossRefGoogle Scholar
  28. 28.
    B.Mandelbrot, The Pareto-Levy law and the distribution of income, International Economic Review 1 (1960) 79–106.MATHCrossRefGoogle Scholar
  29. 29.
    M.Levy, S.Solomon, Power laws are logarithmic Boltzmann laws, International Journal of Modern Physics C 7 (1996) 595–601.CrossRefGoogle Scholar
  30. 30.
    D.Sornette, Multiplicative processes and power laws, Physical Review E 57 (1998) 4811–4813.CrossRefGoogle Scholar
  31. 31.
    Z.Burda, J.Jurkiewicz, M.A. Nowak, Is Econophysics a solid science?, Acta Physica Polonica B 34 (2003) 87.Google Scholar
  32. 32.
    J.Angle, The surplus theory of social stratification and the size distribution of personal wealth, Social Forces 65 (1986) 293.CrossRefGoogle Scholar
  33. 33.
    S.Solomon, M.Levy, Spontaneous scaling emergence in generic stochastic systems, International Journal of Modern Physics C 7 (1996) 745–751.CrossRefGoogle Scholar
  34. 34.
    M.Levy, S.Solomon, G.Ram, Dynamical explanation for the emergence of power law in a stock market model, International Journal of Modern Physics C 7 (1996) 65–72.CrossRefGoogle Scholar
  35. 35.
    S.Ispolatov, P.L. Krapivsky, S.Redner, Wealth distributions in asset exchange models, The European Physical Journal B 2 (1998) 267.CrossRefGoogle Scholar
  36. 36.
    A.K. Gupta, Money exchange model and a general outlook, Physica A 359 (2006) 634.CrossRefGoogle Scholar
  37. 37.
    J.-P. Bouchaud, M.Mezard, Wealth condensation in a simple model of economy, Physica A 282 (2000) 536.CrossRefGoogle Scholar
  38. 38.
    A.Dragulescu, V.M. Yakovenko, Statistical mechanics of money, The European Physical Journal B 17 (2000) 723.CrossRefGoogle Scholar
  39. 39.
    J.C. Ferrero, The statistical distribution of money and the rate of money transference, Physica A 341 (2004) 575.CrossRefGoogle Scholar
  40. 40.
    F.Slanina, Inelastically scattering particles and wealth distribution in an open economy, Physical Review E 69 (2004) 046102.CrossRefGoogle Scholar
  41. 41.
    P.Repetowicz, S.Hutzler, P.Richmond, Dynamics of money and income distributions, Physica A 356 (2005) 641.MathSciNetCrossRefGoogle Scholar
  42. 42.
    S.Cordier, L.Pareschi, G.Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics 120 (2005) 253.MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    D.Matthes, G.Toscani, On steady distributions of kinetic models of conservative economies, Journal of Statistical Physics 130 (2007) 1087.MathSciNetCrossRefGoogle Scholar
  44. 44.
    B.Düring, G.Toscani, Hydrodynamics from kinetic models of conservative economies, Physica A 384 (2007) 493.CrossRefGoogle Scholar
  45. 45.
    B.Düring, D.Matthes, G.Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Physical Review E 78 (2008) 056103.MathSciNetCrossRefGoogle Scholar
  46. 46.
    E.Scalas, U.Garibaldi, S.Donadio, Statistical equilibrium in simple exchange games I — Methods of solution and application to the Bennati-Dragulescu-Yakovenko (BDY) game, The European Physical Journal B 53 (2006) 267.MATHCrossRefGoogle Scholar
  47. 47.
    E.Scalas, U.Garibaldi, S.Donadio, Erratum. statistical equilibrium in simple exchange games I, The European Physical Journal B 60 (2007) 271.MATHCrossRefGoogle Scholar
  48. 48.
    U.Garibaldi, E.Scalas, P.Viarengo, Statistical equilibrium in simple exchange games II. The redistribution game, The European Physical Journal B 60 (2007) 241.Google Scholar
  49. 49.
    J.Angle, The statistical signature of pervasive competition on wage and salary incomes, Journal of Mathematical Sociology 26 (2002) 217.MATHCrossRefGoogle Scholar
  50. 50.
    J.Angle, The inequality process as a wealth maximizing process, Physica A 367 (2006) 388.CrossRefGoogle Scholar
  51. 51.
    A.Chakraborti, B.K. Chakrabarti, Statistical mechanics of money: how saving propensity affects its distribution, The European Physical Journal B 17 (2000) 167–170.CrossRefGoogle Scholar
  52. 52.
    A.Chakraborti, Distributions of money in model markets of economy, International Journal of Modern Physics C 13 (2002) 1315–1322.CrossRefGoogle Scholar
  53. 53.
    B.Hayes, Follow the money, American Scientist 90 (2002) 400–405.Google Scholar
  54. 54.
    A.Chatterjee, B.K. Chakrabarti, S.S. Manna, Money in gas-like markets: Gibbs and Pareto laws, Physica Scripta T106 (2003) 36–38.CrossRefGoogle Scholar
  55. 55.
    J.R. Iglesias, S.Goncalves, S.Pianegonda, J.L. Vega, G.Abramson, Wealth redistribution in our small world, Physica A 327 (2003) 12.MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    J.R. Iglesias, S.Goncalves, G.Abramson, J.L. Vega, Correlation between risk aversion and wealth distribution, Physica A 342 (2004) 186.CrossRefGoogle Scholar
  57. 57.
    N.Scafetta, S.Picozzi, B.J. West, An out-of-equilibrium model of the distributions of wealth, Quantitative Finance 4 (2004) 353-364.MathSciNetCrossRefGoogle Scholar
  58. 58.
    A.Das, S.Yarlagadda, An analytic treatment of the Gibbs-Pareto behavior in wealth distribution, Physica A 353 (2005) 529–538.CrossRefGoogle Scholar
  59. 59.
    M.Ausloos, A.Pekalski, Model of wealth and goods dynamics in a closed market, Physica A 373 (2007) 560.CrossRefGoogle Scholar
  60. 60.
    E.Bennati, La simulazione statistica nell’analisi della distribuzione del reddito: modelli realistici e metodo di Monte Carlo, ETS Editrice, Pisa, 1988.Google Scholar
  61. 61.
    E.Bennati, Un metodo di simulazione statistica nell’analisi della distribuzione del reddito, Rivista Internazionale di Scienze Economiche e Commerciali 35 (1988) 735–756.Google Scholar
  62. 62.
    E.Bennati, Il metodo Monte Carlo nell’analisi economica, Rassegna di Lavori dell’ISCO X (1993) 31.Google Scholar
  63. 63.
    A.C. Silva, V.M. Yakovenko, Temporal evolution of the ‘thermal’ and ‘superthermal’ income classes in the USA during 1983–2001, Europhysics Letters 69 (2005) 304.CrossRefGoogle Scholar
  64. 64.
    X.Sala-i-Martin, S.Mohapatra, Poverty, inequality and the distribution of income in the G20, Columbia University, Department of Economics, Discussion Paper Series, www.columbia.edu/cu/economics/discpapr/DP0203-10.pdf (2002).Google Scholar
  65. 65.
    X.Sala-i-Martin, The world distribution of income (estimated from individual country distributions), NBER Working Paper Series Nr.8933, www.nber.org/papers/w8933 (May 2002).Google Scholar
  66. 66.
    H.Aoyama, W.Souma, Y.Fujiwara, Growth and fluctuations of personal and company’s income, Physica A 324 (2003) 352.MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    J.Angle, The surplus theory of social stratification and the size distribution of personal wealth, in: Proceedings of the American Social Statistical Association, Social Statistics Section, Alexandria, VA, 1983, p. 395.Google Scholar
  68. 68.
    M.Patriarca, A.Chakraborti, K.Kaski, Gibbs versus non-Gibbs distributions in money dynamics, Physica A: Statistical Mechanics and its Applications 340 (2004) 334–339.MathSciNetCrossRefGoogle Scholar
  69. 69.
    M.Patriarca, A.Chakraborti, K.Kaski, Statistical model with a standard gamma distribution, Physical Review E 70 (2004) 016104.CrossRefGoogle Scholar
  70. 70.
    M.Patriarca, E.Heinsalu, A.Chakraborti, Basic kinetic wealth-exchange models: common features and open problems, The European Physical Journal B 73 (2010) 145.MATHCrossRefGoogle Scholar
  71. 71.
    A.Chakraborti, M.Patriarca, Gamma-distribution and wealth inequality, Pramana Journal of Physics 71 (2008) 233.CrossRefGoogle Scholar
  72. 72.
    J.Angle, Deriving the size distribution of personal wealth from the rich get richer, the poor get poorer, Journal of Mathematical Sociology 18 (1993) 27.MATHGoogle Scholar
  73. 73.
    A.Chatterjee, B.K. Chakrabarti, S.S. Manna, Pareto law in a kinetic model of market with random saving propensity, Physica A 335 (2004) 155–163.MathSciNetCrossRefGoogle Scholar
  74. 74.
    P.K. Mohanty, Generic features of the wealth distribution in ideal-gas-like markets, Physical Review E 74 (2006) 011117.CrossRefGoogle Scholar
  75. 75.
    A.Das, S.Yarlagadda, An analytic treatment of the Gibbs-Pareto behavior in wealth distribution, Physica A 353 (2005) 529.CrossRefGoogle Scholar
  76. 76.
    K.Bhattacharya, G.Mukherjee, S.S. Manna, Detailed simulation results for some wealth distribution models in econophysics, in: A.Chatterjee, S.Yarlagadda, B.K. Chakrabarti (Eds.), Econophysics of Wealth Distributions, Springer, Berlin, 2005, p. 111.CrossRefGoogle Scholar
  77. 77.
    A.Chatterjee, B.K. Chakrabarti, R.B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Physical Review E 72 (2005) 026126.CrossRefGoogle Scholar
  78. 78.
    D.Challet, M.Marsili, Y.-C. Zhang, Minority Games, Oxford University Press, Oxford, UK, 2005.MATHGoogle Scholar
  79. 79.
    D.Challet, Y.-C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A 246 (1997) 407–418.CrossRefGoogle Scholar
  80. 80.
    A.A.C. Coolen, The Mathematical Theory of Minority Games, Oxford University Press, Oxford, UK, 2004.Google Scholar
  81. 81.
    N.F. Johnson, P.Jefferies, P.M. Hui, Financial Market Complexity, Oxford University Press, Oxford, UK, 2003.CrossRefGoogle Scholar
  82. 82.
    W.B. Arthur, Inductive reasoning and bounded rationality, American Economic Review 84 (1994) 406–411.Google Scholar
  83. 83.
    M.Marsili, Market mechanism and expectations in minority and majority games, Physica A 299 (2001) 93–103.MATHMathSciNetCrossRefGoogle Scholar
  84. 84.
    D.Challet, M.Marsili, Y.-C. Zhang, Minority games and stylized facts, Physica A 299 (2001) 228–233.MATHCrossRefGoogle Scholar
  85. 85.
    D.Challet, A.Chessa, M.Marsili, Y.-C. Zhang, From minority games to real markets, Quantitative Finance 1 (2000) 168.MathSciNetCrossRefGoogle Scholar
  86. 86.
    D.Challet, M.Marsili, Y.-C. Zhang, Modeling market mechanism with minority game, Physica A 276 (2000) 284–315.MathSciNetCrossRefGoogle Scholar
  87. 87.
    A.D. Martino, M.Marsili, Replica symmetry breaking in the minority game, Journal of Physics A: Mathematics and General 34 (2001) 2525–2537.MATHCrossRefGoogle Scholar
  88. 88.
    D.Challet, M.Marsili, Phase transition and symmetry breaking in the minority game, Physical Review E 60 (1999) R6271–R6274.CrossRefGoogle Scholar
  89. 89.
    R.Savit, R.Manuca, R.Riolo, Adaptive competition, market efficiency, and phase transitions, Physical Review Letters 82 (1999) 2203–2206.CrossRefGoogle Scholar
  90. 90.
    D.Challet, M.Marsili, R.Zecchina, Statistical mechanics of systems with heterogeneous agents: Minority games, Physical Review Letters 84 (2000) 1824–1827.CrossRefGoogle Scholar
  91. 91.
    A.Cavagna, J.P. Garrahan, I.Giardina, D.Sherrington, Thermal model for adaptive competition in a market, Physical Review Letters 83 (1999) 4429–4432.CrossRefGoogle Scholar
  92. 92.
    M.Sysi-Aho, A.Chakraborti, K.Kaski, Intelligent minority game with genetic crossover strategies, The European Physical Journal B 34 (2003) 373–377.CrossRefGoogle Scholar
  93. 93.
    D.Challet, Y.-C. Zhang, On the minority game: Analytical and numerical studies, Physica A 256 (1998) 514–532.CrossRefGoogle Scholar
  94. 94.
    Y.Li, R.Riolo, R.Savit, Evolution in minority games. (I). Games with a fixed strategy space, Physica A 276 (2000) 234–264.MathSciNetGoogle Scholar
  95. 95.
    Y.Li, R.Riolo, R.Savit, Evolution in minority games. (II). games with variable strategy spaces, Physica A 276 (2000) 265–283.MathSciNetGoogle Scholar
  96. 96.
    M.Sysi-Aho, A.Chakraborti, K.Kaski, Adaptation using hybridized genetic crossover strategies, Physica A 322 (2003) 701–709.MATHCrossRefGoogle Scholar
  97. 97.
    M.Sysi-Aho, A.Chakraborti, K.Kaski, Biology helps you to win a game, Physica Scripta T106 (2003) 32–35.CrossRefGoogle Scholar
  98. 98.
    M.Sysi-Aho, A.Chakraborti, K.Kaski, Searching for good strategies in adaptive minority games, Physical Review E 69 (2004) 036125.CrossRefGoogle Scholar
  99. 99.
    D.Challet, Y.-C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A 246 (1997) 407–418.CrossRefGoogle Scholar
  100. 100.
    N.F. Johnson, P.M. Hui, R.Jonson, T.S. Lo, Self-organized segregation within an evolving population, Physical Review Letters 82 (1999) 3360–3363.CrossRefGoogle Scholar
  101. 101.
    N.F. Johnson, M.Hart, P.M. Hui, Crowd effects and volatility in markets with competing agents, Physica A 269 (1999) 1–8.CrossRefGoogle Scholar
  102. 102.
    M.L. Hart, P.Jefferies, P.Hui, N.F. Johnson, Crowd-anticrowd theory of multi-agent market games, The European Physical Journal B 20 (2001) 547–550.MathSciNetCrossRefGoogle Scholar
  103. 103.
    P.W. Anderson, More is different, Science 4047 (1972) 393–396.CrossRefGoogle Scholar
  104. 104.
    J.-P. Bouchaud, Economics needs a scientific revolution, Nature 455 (2008) 1181.CrossRefGoogle Scholar
  105. 105.
    T. Lux, F. Westerhoff, Economics crisis, Nature Physics 5 (2009) 2–3.CrossRefGoogle Scholar
  106. 106.
    J.D. Farmer, D. Foley, The economy needs agent-bassed modelling 460 (2009) 685–686.Google Scholar
  107. 107.
    C. Deissenberg, S. van der Hoog, H. Dawid, EURACE: A massively parallel agent-based model of the European economy, Applied mathematics and computation 204 (2008) 541–552.MATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    S. van der Hoog, C. Deissenberg, H. Dawid, Production and finance in EURACE, Complexity and artificial markets 614 (2008) 147–158.CrossRefGoogle Scholar
  109. 109.
    C. H. Yeung, Y.-C. Zhang, Minority games, arXiv:0811.1479

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Appliquées aux SystèmesEcole Centrale ParisChâtenay-MalabryFrance
  2. 2.Fachbereich 15 und WZMW, AG ComputersimulationPhilipps-Universität MarburgMarburgGermany
  3. 3.Dipartimento di Scienze Economiche e Metodi QuantitativiUniversità del Piemonte Orientale “Amedeo Avogadro,”NovaraItaly

Personalised recommendations