Statistical Mechanics and Ergodic Theory

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


The purpose of this chapter is to tie together a number of concepts that have been presented earlier. Stochastic models and information-theoretic quantities such as entropy are not disjoint concepts. They overlap nicely in the context of statistical mechanics, where stochastic models describe general classes of equations of motion of physical systems.


Phase Space Brownian Motion Statistical Mechanic Ergodic Theory Ergodic Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, R.L., Konheim, A.G., McAndrew, M.H., “Topological entropy,” Trans. Am. Math. Soc., 114(2), pp. 309–319, 1965.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.Google Scholar
  3. 3.
    Arnol’d, V.I., Avez, A., Ergodic Problems of Classical Mechanics, W.A. Benjamin, New York, 1968.Google Scholar
  4. 4.
    Auslander, L.,Green, L., Hahn, F., Flows on Homogeneous Spaces, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1963.Google Scholar
  5. 5.
    Beck, T.L., Paulaitis, M.E., Pratt, L.R., The Potential Distribution Theorem and Models of Molecular Solutions, Cambridge University Press, Cambridge, 2006.Google Scholar
  6. 6.
    Bekka, M.B., Mayer, M., Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge University Press, Cambridge, 2000.Google Scholar
  7. 7.
    Bennett, C.H., “The thermodynamics of computation—a review,” Int. J. Theor. Phys., 12, pp. 905–940, 1982.CrossRefGoogle Scholar
  8. 8.
    Billingsley, P., Ergodic Theory and Information, Robert E. Krieger Publishing Co., Huntington, NY, 1978.Google Scholar
  9. 9.
    Birkhoff, G.D.,“Proof of the ergodic theorem,” Proc. Natl. Acad. Sci. USA 17, pp. 656– 660, 1931.CrossRefGoogle Scholar
  10. 10.
    Bismut, J.-M., M´ecanique Al´eatoire, Springer-Verlag, Berlin, 1981.Google Scholar
  11. 11.
    Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd revised ed., Chazottes, J.-R. ed., Lecture Notes in Mathematics 470, Springer, Berlin, 2008.Google Scholar
  12. 12.
    Brillouin, L., Science and Information Theory, 2nd ed., Academic Press, New York, 1962.Google Scholar
  13. 13.
    Bud´o, A., Fischer, E., Miyamoto, S., “Einflusder Molek¨ulform auf die dielektrische Relaxation,” Physikal. Zeitschr., 40, pp. 337–345, 1939.Google Scholar
  14. 14.
    Bunimovich, L.A., Dani, S.G., Dobrushin, R.L., Jakobson, M.V., Kornfeld, I.P., Maslova, N.B., Pesin, Ya. B., Sinai, Ya. G., Smillie, J., Sukhov, Yu. M., Vershik, A.M., Dynamical Systems, Ergodic Theory, and Applications, 2nd ed., Encyclopaedia of Mathematical Sciences Vol. 100, Springer-Verlag Berlin, 2000.Google Scholar
  15. 15.
    Chandler, D., Andersen, H.C., “Optimized cluster expansions for classical fluids. II. Theory of molecular liquids,” J. Chem. Phys., 57(5), pp. 1930–1937, 1972.CrossRefGoogle Scholar
  16. 16.
    Chirikjian, G.S., Wang, Y.F., “Conformational statistics of stiff macromolecules as solutions to PDEs on the rotation and motion groups,” Phys. Rev. E, 62(1), pp. 880–892, 2000.CrossRefGoogle Scholar
  17. 17.
    Chirikjian, G.S., “Group theory and biomolecular conformation, I. Mathematical and computational models,” J. Phys.: Condens. Matter. 22, 323103, 2010.Google Scholar
  18. 18.
    Choe, G.H., Computational Ergodic Theory, Springer, New York, 2005.Google Scholar
  19. 19.
    Crooks, G.E., “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Phys. Rev. E, 60, pp. 2721–2726, 1999.CrossRefGoogle Scholar
  20. 20.
    Dill, K.A., Bromberg, S., Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, Garland Science/Taylor and Francis, New York, 2003.Google Scholar
  21. 21.
    Evans, D.J., Morriss, G., Statistical Mechanics of Nonequilibrium Liquids, 2nd ed., Cambridge University Press, Cambridge, 2008Google Scholar
  22. 22.
    Farquhar, I.E., Ergodic Theory in Statistical Mechanics, Interscience Publishers/JohnWiley and Sons, New York, 1964.Google Scholar
  23. 23.
    Favro, L.D., “Theory of the rotational Brownian motion of a free rigid body,” Phys. Rev., 119(1), pp. 53–62, 1960.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Feig, M., ed., Modeling Solvent Environments: Applications to Simulations and Biomolecules, Wiley–VCH, Weinheim, 2010.Google Scholar
  25. 25.
    Feynman, R.P., Feynman Lectures on Computation, T. Hey and R.W. Allen, eds., Westview Press, Boulder, Colorado, 1996.Google Scholar
  26. 26.
    Frieden, B.R., Physics from Fisher Information, Cambridge University Press, Cambridge, 1998.Google Scholar
  27. 27.
    Furry, W.H., “Isotropic rotational Brownian motion,” Phys. Rev., 107(1), pp. 7–13, 1957.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Gibbs, J.W., Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics, 1902 (reissued by Kessinger Publishing and BiblioBazaar, 2008).Google Scholar
  29. 29.
    Gray, C.G., Gubbins, K.E., Theory of Molecular Fluids, Vol. 1: Fundamentals, Clarendon Press, Oxford, 1984.Google Scholar
  30. 30.
    Gray, R. M., Davisson, L.D., eds., Ergodic and Information Theory, Benchmark Papers in Electrical Engineering and Computer Science Vol. 19, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1977.Google Scholar
  31. 31.
    Halmos, P.R., Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo, 1956.Google Scholar
  32. 32.
    Hansen, J.-P., McDonald, I.R., Theory of Simple Liquids, 3rd ed., Academic Press, New York, 2006.Google Scholar
  33. 33.
    Hill, T.L., An Introduction to Statistical Thermodynamics, Dover Publications, New York, 1960, 1986.Google Scholar
  34. 34.
    Hirata, F., ed., Molecular Theory of Solvation, Kluwer Academic Publishers, Dordrecht, 2003.Google Scholar
  35. 35.
    Huang, K., Statistical Mechanics, 2nd ed., John Wiley and Sons, New York, 1987.Google Scholar
  36. 36.
    Hubbard, P.S., “Angular velocity of a nonspherical body undergoing rotational Brownian motion,” Phys. Rev. A, 15(1), pp. 329–336, 1977.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hummer, G., Szabo, A., “Free energy reconstruction from nonequilibrium single-molecule pulling experiments,” PNAS, 98(7), pp. 3658–3661, 2001.CrossRefGoogle Scholar
  38. 38.
    Jarzynski C., “Nonequilibrium equality for free energy differences,” Phys. Rev. Lett., 78, pp. 2690–2693, 1997.CrossRefGoogle Scholar
  39. 39.
    Jaynes, E.T., “Information theory and statistical mechanics, I+II,” Phys. Rev., 106(4), pp. 620–630, 1957; 108(2), pp. 171–190, 1957.Google Scholar
  40. 40.
    Jeffrey, G.B., “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. London. Series A, 102(Nov. 1), pp. 161–179, 1922.Google Scholar
  41. 41.
    Kac, M., Some Stochastic Problems in Physics and Mathematics, Colloquium Lectures in the Pure and Applied Sciences, Magnolia Petroleum Company, 1957.Google Scholar
  42. 42.
    Kaniuth, E., Ergodic and mixing properties of measures on locally compact groups, Lecture Notes in Mathematics, 1210, pp. 125–129, Springer, Berlin, 1986.Google Scholar
  43. 43.
    Khinchin, A.I., Mathematical Foundations of Statistical Mechanics, Dover Publications, New York, 1949.Google Scholar
  44. 44.
    Kim, M.K., Jernigan, R.L., Chirikjian, G.S., “Rigid-cluster models of conformational transitions in macromolecular machines and assemblies,” Biophys. J., 89(1), pp. 43–55, 2005.CrossRefGoogle Scholar
  45. 45.
    Kleinbock, D., Shah, N., Starkov, A., “Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory,” in Handbook of Dynamical Systems, Vol. 1A, B. Hasselblatt and A. Katok, eds., Chapter 11, pp. 813–930, Elsevier, Amsterdam, 2002.Google Scholar
  46. 46.
    Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 2nd ed., World Scientific, Singapore, 1995.Google Scholar
  47. 47.
    Kolmogorov, A.N., “New metric invariant of transitive automorphisms and flows of Lebesgue spaces,” Dokl. Acad. Sci. USSR, 119(5), pp. 861–864, 1958.MathSciNetMATHGoogle Scholar
  48. 48.
    Landauer, R., “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev., 5, pp. 183–191, 1961.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Landauer, R., “Dissipation and noise immunity in computation and communication,” Nature, 335, pp. 779–784, 1988.CrossRefGoogle Scholar
  50. 50.
    Leff, H.S., Rex, A.F., Maxwell’s Demon: Entropy, Information, Computing, Princeton University Press, Princeton, NJ, 1990.Google Scholar
  51. 51.
    Leff, H.S., Rex, A.F., Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, Institute of Physics, Bristol, 2003.Google Scholar
  52. 52.
    MacDonald, D.K.C., Introductory Statistical Mechanics for Physicists, Dover Publications, Mineola, NY, 2006. (originally published by John Wiley and Sones in 1963).Google Scholar
  53. 53.
    Mackey, G. W., “Ergodic Theory and its significance for statistical mechanics and probability theory,” Adv. Math., 12, pp. 178–268, 1974.MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Ma˜n´e, R., Ergodic Theory and Differentiable Dynamics (translated from the Portuguese by Silvio Levy), Springer-Verlag, Berlin, 1987.Google Scholar
  55. 55.
    Margulis, G.A., Nevo, A., Stein, E.M., “Analogs ofWiener’s ergodic theorems for semisimple groups II,” Duke Math. J. 103(2), pp. 233–259, 2000.MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    McConnell, J., Rotational Brownian Motion and Dielectric Theory, Academic Press, New York, 1980.Google Scholar
  57. 57.
    McLennan, J.A., Introduction to Non-Equilibrium Statistical Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  58. 58.
    Moore, C.C., “Ergodicity of flows on homogeneous spaces,”Am. J. Math. 88, pp. 154–178, 1966.MATHCrossRefGoogle Scholar
  59. 59.
    Moser, J., Phillips, E., Varadhan, S., Ergodic Theory (A Seminar), Courant Institute, NYU, New York, 1975.Google Scholar
  60. 60.
    Nelson, E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967.Google Scholar
  61. 61.
    Nevo, A., Stein, E.M., “Analogs of Wiener’s ergodic theorems for semisimple groups I,” Ann. Math., Second Series, 145(3), pp. 565–595, 1997.Google Scholar
  62. 62.
    Ornstein, D.S., Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven, CT, 1974.Google Scholar
  63. 63.
    Ornstein, L.S., Zernike, F., “Accidental deviations of density and opalescence at the critical point of a single substance,” Proc. Akad. Sci. (Amst.), 17, 793 (1914).Google Scholar
  64. 64.
    Parry, W., Topics in Ergodic Theory, Cambridge University Press, Cambridge, 1981.Google Scholar
  65. 65.
    Pathria, R.K., Statistical Mechanics, Pergamon Press, Oxford, England, 1972.Google Scholar
  66. 66.
    Percus, J.K., Yevick, G.J., Phys. Rev., 110, 1 (1958).MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Percus, J.K., Phys. Rev. Letters, 8, 462 (1962).CrossRefGoogle Scholar
  68. 68.
    Perrin, F., “´Etude Math´ematique du Mouvement Brownien de Rotation,” Ann. Sci. L’ ´ Ecole Norm. Sup´erieure, 45, pp. 1–51, 1928.Google Scholar
  69. 69.
    Petersen, K., Ergodic Theory, Cambridge University Press, Cambridge, 1983.Google Scholar
  70. 70.
    Prigogine, I., Non-Equilibrium Statistical Mechanics, John Wiley and Sons, New York, 1962.Google Scholar
  71. 71.
    R´efr´egier, P., Noise Theory and Applications to Physics: From Fluctuations to Information, Springer, New York, 2004.Google Scholar
  72. 72.
    Rokhlin, V.A., “Lectures on the entropy theory of transformations with invariant measure,” Usp. Mat. Nauk. 22, pp. 3–56, 1967; Russ. Math. Surveys, 22, pp. 1–52, 1967.Google Scholar
  73. 73.
    Ruelle, D., “Ergodic theory of differentiable dynamical systems,” Publ. IHES, 50, pp. 275– 306, 1979.Google Scholar
  74. 74.
    Seife, C., Decoding the Universe, Penguin Books, New York, 2006.Google Scholar
  75. 75.
    Sinai, Ya. G., “On the notion of entropy of dynamical systems,” Dokl. Acad. Sci. USSR, 124(4), pp. 768–771, 1959.Google Scholar
  76. 76.
    Sinai, Ya. G., Introduction to Ergodic Theory (translated by V. Scheffer), Princeton University Press, Princeton, NJ, 1976.Google Scholar
  77. 77.
    Sinai, Ya.G., Topics in Ergodic Theory, Princeton University Press, Princeton, NJ, 1994.Google Scholar
  78. 78.
    Skliros, A., Chirikjian, G.S., “Positional and orientational distributions for locally selfavoiding random walks with obstacles,” Polymer, 49(6), pp. 1701–1715, 2008.CrossRefGoogle Scholar
  79. 79.
    Skliros, A., Park, W., Chirikjian, G.S., “Position and orientation distributions for nonreversal random walks using space-group Fourier transforms,” J. Alg. Statist., 1(1)Google Scholar
  80. 80.
    pp. 27–46, 2010.Google Scholar
  81. 81.
    Smoluchowski, M. v., “Uber Brownsche Molekular bewegung unter Einwirkung auszerer Krafte und deren Zusammenhang mit der verralgenmeinerten Diffusionsgleichung,” Ann. Phys., 48, pp. 1103–1112, 1915.Google Scholar
  82. 82.
    Steele, W.A., “Molecular reorientation in liquids. I. Distribution functions and friction constants. II. Angular autocorrelation functions,” J. Chem. Phys., 38(10), pp. 2404–2410, 2411–2418, 1963.Google Scholar
  83. 83.
    Sugita, Y., Okamoto, Y., “Replica-exchange molecular dynamics method for protein folding,” Chem. Phys. Lett., 314, pp. 141–151, 1999.CrossRefGoogle Scholar
  84. 84.
    Szilard, L., “On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings,” Zeit. Phys., 53, pp. 840–856, 1929 (in German, English translation in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek, eds., pp. 539–548, Princeton University Press, Princeton, NJ, 1983).Google Scholar
  85. 85.
    Tao, T., “Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers, 8(5), pp. 609–632, 1969.CrossRefGoogle Scholar
  86. 86.
    Templeman, A., Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  87. 87.
    Tolman, R.C., The Principles of Statistical Mechanics, Dover Publications, New York, 1979.Google Scholar
  88. 88.
    Ulam, S.M., von Neumann, J., “Random ergodic theorems,” Bull. Am. Math. Soc., 51(9), p. 660, 1947.Google Scholar
  89. 89.
    von Neumann, J., “Proof of the quasi-ergodic hypothesis,” Proc. Natl. Acad. Sci. USA, 18, pp. 70–82, 1932.CrossRefGoogle Scholar
  90. 90.
    von Neumann, J., “Physical applications of the ergodic hypothesis,” Proc. Natl. Acad. Sci. USA, 18, pp. 263–266, 1932.CrossRefGoogle Scholar
  91. 91.
    Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.Google Scholar
  92. 92.
    Weber, G., “Rotational Brownian motion and polarization of the fluorescence of solutions,” Adv Protein Chem., 8, pp. 415–459, 1953.CrossRefGoogle Scholar
  93. 93.
    Welecka, J.D., Fundamentals of Statistical Mechanics: Manuscript and Notes of Felix Bloch, Imperial College Press/World Scientific Publishing, London/Singapore, 2000.Google Scholar
  94. 94.
    Weyl, H., “Uber die Gleichverteilung von Zahlen mod 1,” Math, Ann. 77, pp. 313–352, 1916.MathSciNetMATHGoogle Scholar
  95. 95.
    Wiener, N., “The Ergodic theorem,” Duke Math. J., 5, pp. 1–18, 1939.MathSciNetCrossRefGoogle Scholar
  96. 96.
    Wiener, N., Cybernetics: or Control and Communication in the Animal and the Machine, 2nd ed., The MIT Press, Cambridge, MA, 1961.Google Scholar
  97. 97.
    Zhou, Y., Chirikjian, G.S., “Conformational statistics of semi-flexible macromolecular chains with internal joints,” Macromolecules, 39(5), pp. 1950–1960, 2006.CrossRefGoogle Scholar
  98. 98.
    Zhou, Y., Chirikjian, G.S., “Conformational statistics of bent semiflexible polymers,” J. Chem. Phys., 119(9), pp. 4962–4970, 2003.CrossRefGoogle Scholar
  99. 99.
    Zimmer, R.J., Morris, D.W., Ergodic Theory, Groups, and Geometry. American Mathematical Society, Providence, RI, 2008.Google Scholar
  100. 100.
    Zuckerman, D.M., Woolf, T.B., “Efficient dynamic importance sampling of rare events in one dimension,” Phys. Rev. E, 63, 016702 (2000).CrossRefGoogle Scholar
  101. 101.
    Zurek, W.H. ed., Complexity, Entropy and the Physics of Information, Sante Fe Institute Studies in the Sciences of Complexity Vol. 8, Addison-Wesley, Reading, MA, 1990.Google Scholar
  102. 102.
    Zurek, W.H., “Thermodynamic cost of computation, algorithmic complexity, and the information metric,” Nature, 341, pp. 119–124, 1989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations