Skip to main content

Locomotion and Perception as Communication over Principal Fiber Bundles

  • Chapter
  • First Online:
Stochastic Models, Information Theory, and Lie Groups, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 4321 Accesses

Abstract

This chapter can be viewed as a demonstration of applications of the Lie-theoretic methods presented in Chapters 10–12, the inequalities in Chapter 19, and the stochastic processes on Lie groups in Chapter 20. As in Chapter 1, the simple system used to illustrate these concepts is the nonholonomic kinematic cart. When any trajectory of the cart is discretized into smaller segments which are drawn from a set of intended maneuvers, then this set serves as an alphabet of basic moves. As the cart moves and noise is added to these intended moves, it will not move exactly as planned. This corruption of the resulting output position and orientation can be viewed as an injection of noise through the combined space of pose and wheel angles. This space is an example of the differential geometric structure called a principal fiber bundle.1 An external observer (which might be a human or another robot) watching the motion of the robot can then attempt to infer the robot’s intent and functionality. The combination of stochastic models, information theory, and Lie groups is helpful in studying such scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atema, J., “Eddy chemotaxis and odor landscapes: exploraton of nature with animal sensors,” Biol. Bull., 191(1), pp. 129–138, 1996.

    Article  Google Scholar 

  2. Attneave, F., “Some informational aspects of visual perception,” Psychol. Rev., 61(3), pp. 183–193, 1954.

    Article  Google Scholar 

  3. Baldwin, G., Mahony, R., Trumpf, J., “A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements,” IEEE International Conference on Robotics and Automation, Kobe, Japan, May 2009.

    Google Scholar 

  4. Berg, H.C., E. coli in Motion, Springer, New York, 2003.

    Google Scholar 

  5. Bloch, A. M., et al. Nonholonomic Mechanics and Control. Springer, New York, 2003.

    Google Scholar 

  6. Bray, D., Cell Movements, Garland Pubishing, Inc., New York, 1992.

    Google Scholar 

  7. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P., Wiener, M., “Geometric visual hallucinations, Euclidean symmetry, and the functional architecture of striate cortex,” Philos. Trans. Soc. London B, 356(1407), pp. 299-330, 2001.

    Article  Google Scholar 

  8. Brockett, R.W., “System theory on group manifolds and coset spaces,” SIAM J. Control, 10(2), pp. 265–284, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, J.F., Voth, A.C., “The path of seen movement as a function of the vector field,” Am. J. Psychol., 49, pp. 543–563, 1937.

    Article  Google Scholar 

  10. Bullo, F., Lewis, A.D., Geometric Control of Mechanical Systems, Springer, New York, 2004.

    Google Scholar 

  11. Censi, A., “On achievable accuracy for pose tracking,” IEEE International Conference on Robotics and Automation, Kobe, Japan, May 2009.

    Google Scholar 

  12. Censi, A., “On achievable accuracy for range-finder localization,” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4170–4175, 2007.

    Google Scholar 

  13. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston, 2005.

    Google Scholar 

  14. Citti, G., Sarti, A., “A Cortical Based Model of Perceptual Completion in the Roto- Translation Space,” J. Math. Imaging Vision, 24(3), pp. 307–326, 2006.

    Article  MathSciNet  Google Scholar 

  15. Cortez, R.A., Tanner, H.G., Lumia, R., “Distributed robotic radiation mapping,” Experimental Robotics, Springer Tracts in Advanced Robotics, Vol. 54, pp. 147–156, 2009.

    Article  Google Scholar 

  16. Cowan, N.J., Chang, D.E., “Geometric visual servoing,” IEEE Trans. Robot., 21(6), pp. 1128–1138, 2005.

    Article  Google Scholar 

  17. Duits, R., Franken, E., “Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part I: Linear left-invariant diffusion equations on SE(2),” Q. Appl. Math., 68, pp. 255–292, 2010.

    MathSciNet  MATH  Google Scholar 

  18. Duits, R., van Almsick, M., Duits, M., Franken, E., Florack, L.M.J., “Image processing via shift-twist invariant operations on orientation bundle functions,” Pattern Recognition and Image Analysis, 15(1), pp. 151–156, 2005.

    Google Scholar 

  19. Durrant-Whyte, H.F., “sensor models and multisensor integration,” Int. J. Robot. Res., 7(6), pp. 97–113, 1988.

    Article  Google Scholar 

  20. Durrant-Whyte, H.F., Integration, Coordination and Control of Multi-Sensor Robot Systems, Kluwer Academic Publishers, Boston, 1988.

    Google Scholar 

  21. Dusenbery, D.B., Sensory Ecology: How Organisms Acquire and Respond to Information, Freeman, New York, 1992.

    Google Scholar 

  22. Fax, J.A., Murray, R.M., “Information Flow and Cooperative Control of Vehicle Formations,” IEEE Trans. Autom. Control, 49(9), pp. 1465–1476, 2004.

    Article  MathSciNet  Google Scholar 

  23. Ferraro, M., Caelli, T.M., “Lie transformation groups, integral transforms, and invariant pattern recognition,” Spatial Vison, 8(1), pp. 33–44, 1994.

    Google Scholar 

  24. Franken, E.M., Enhancement of Crossing Elongated Structures in Images, Ph.D. thesis, Department of Biomedical Engineering, Eindhoven University of Technology, 2008.

    Google Scholar 

  25. Handzel, A.A., Flash, T., “The geometry of eye rotations and Listing’s law,” Adv. Neural Inform. Process. Syst., 8, pp. 117–123, 1996.

    Google Scholar 

  26. Hatton, R.L., Choset, H., “Geometric motion planning: The local connection, Stokes’s theorem, and the importance of coordinate choice,” Int. J. Robot. Res., 30(8), pp. 988– 1014, 2011.

    Article  Google Scholar 

  27. Hladky, R.K., Pauls, S.D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model,” J. Math. Imaging Vision, 36(1), pp. 1–27, 2010.

    Article  MathSciNet  Google Scholar 

  28. Hoffman, W.C., “The Lie algebra of visual perception,” J. Math. Psychol., 3, pp. 65–98, 1966.

    Article  MATH  Google Scholar 

  29. Hoffman, W.C., “Higher visual perception as prolongation of the basic Lie transformation group,” Math. Biosci., 6, pp. 437–471, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hoffman, W.C., “Some reasons why algebraic topology is important in neuropsychology: perceptual and cognitive systems as fibrations,” Int. J. Man-Machine Studies, 22, pp. 613– 650, 1985.

    Article  MATH  Google Scholar 

  31. Hoffman, W.C., “The visual cortex is a contact bundle,” Appl. Math. Comput., 32, pp. 137– 167, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  32. Hubel, D.H., Wiesel, T.N., “Receptive fields of single neurones in the cat’s striate cortex,” J. Physiol., 148, pp. 574–591, 1959.

    Google Scholar 

  33. Hubel, D.H., Wiesel, T.N., “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, pp. 106–154, 1962.

    Google Scholar 

  34. Hubel, D.H., Wiesel, T.N., “Ferrier lecture: Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London B: Biol. Sci., 198, pp. 1–59, 1977.

    Article  Google Scholar 

  35. Husemoller, D., Fibre Bundles, 3rd ed., Springer, New York, 1993.

    Google Scholar 

  36. Isham, C.J., Modern Differential Geometry for Physicists, World Scientific Publishing, Singapore, 1989.

    Google Scholar 

  37. Jurdjevic, V., Sussmann, H.J., “Control systems on Lie groups,” J. Diff. Eq., 12, pp. 313– 329, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  38. Kallem, V., Chang, D.E., Cowan, N.J., “Task-induced symmetry and reduction with application to needle steering,”IEEE Trans. Automa. Control, 55(3), pp. 664–673, 2010.

    Article  MathSciNet  Google Scholar 

  39. Kutzer, M.D.M., Armand, M., Lin, E., Scheidt, D., Chirikjian, G.S., “Toward cooperative team-diagnosis in multi-robot systems,” Int. J. Robot. Res., 27, pp. 1069–1090, 2008.

    Article  Google Scholar 

  40. Kwon, J., Choi, M., Park, F.C., Chu, C., “Particle filtering on the Euclidean group: Framework and applications, ” Robotica, 25, pp. 725–737, 2007.

    Article  Google Scholar 

  41. LaValle, S.M., Planning Algorithms, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  42. Lee, K., Chirikjian, G.S., Robotic self-replication from low-complexity parts. IEEE Robot. Automa. Mag., 14(4), pp. 34–43, 2007.

    Google Scholar 

  43. Lee, K., Moses, M., Chirikjian, G.S., “Robotic self-replication in partially structured environments: Physical demonstrations and complexity measures,” Int. J. Robot. Res., 27(3–4), pp. 387–401, 2008.

    Article  Google Scholar 

  44. Lewin, K., Principles of Topological Psychology, McGraw-Hill, New York, 1936.

    Google Scholar 

  45. Mahony, R., Hamel, T., Pflimlin, J.-M., “Nonlinear complementary filters on the special orthogonal group,” IEEE Trans. on Autom. Control, 53(5), pp. 1203–1218, 2008.

    Article  MathSciNet  Google Scholar 

  46. Makadia, A., Daniilidis, K., “Rotation estimation from spherical images,” IEEE Trans. Pattern Anal. Mach. Intell., 28, pp. 1170–1175, 2006.

    Article  Google Scholar 

  47. Malis, E., Hamel, T., Mahony, R., Morin, P., “Dynamic estimation of homography transformations on the special linear group for visual servo control,” IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12–17, 2009; paper 0538.pdf on CD Rom Proceedings.

    Google Scholar 

  48. Manyika, J., Durrant-Whyte, H., Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach, Ellis Horwood, New York, 1994.

    Google Scholar 

  49. Mourikis, A., Roumeliotis, S., “On the treatment of relative-pose measurements for mobile robot localization,” ICRA’06, Orlando, FL, 2006.

    Google Scholar 

  50. Mukherjee, R., Anderson, D.P., “Nonholonomic motion planning using Stokes’ theorem,”

    Google Scholar 

  51. Proceedings of the IEEE International Conference on Robotics and Automation, 1993.

    Google Scholar 

  52. Mumford, D., “Elastica and computer vision,” in Algebraic Geometry and Its Applications, C. Bajaj ed., Springer-Verlag, New York, 1994.

    Google Scholar 

  53. Murray, R., Sastry, S., “Nonholonomic motion planning: Steering using sinusoids,” IEEE Trans. Autom. Control, 38(5), pp. 700–715, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  54. Murray, R., Li, Z., Sastry, S., A Mathematical Introduction to Robotics, CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  55. Orbison, W.D., “Shape as a function of the vector-field,” Am. J. Psychol., 52, pp. 31–45, 1939.

    Article  Google Scholar 

  56. Ostrowski, J.P., The Mechanics and Control of Undulatory Robotic Locomotion, Ph.D. dissertation, Caltech, 1996.

    Google Scholar 

  57. Ostrowski, J., Burdick, J., “The mechanics and control of undulatory locomotion,” Int. J. Robot. Res., 17(7), pp. 683–701, 1998.

    Article  Google Scholar 

  58. Park, W., Liu, Y., Moses, M., Chirikjian, G.S., “Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map,” Robotica, 26(4), pp. 419–434, 2008.

    Article  MATH  Google Scholar 

  59. Park, W., Wang, Y., Chirikjian, G.S., “The path-of-probability algorithm for steering and feedback control of flexible needles,” Int. J. Robot. Res., 29, pp. 813–830, 2010.

    Article  Google Scholar 

  60. Patlak, C.S., “Random walk with persistence and external bias,” Bull. Math. Biophys., 15, pp. 311–338, 1953.

    Article  MathSciNet  Google Scholar 

  61. Patlak, C.S., “A mathematical contribution to the study of orientation of organisms,” Bull. Math. Biophys., 15, pp. 431–476, 1953.

    Article  MathSciNet  Google Scholar 

  62. Pennec, X., “Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements,” J. Math. Imaging Vision, 25(1), pp. 127–154, 2006.

    Article  MathSciNet  Google Scholar 

  63. Petitot, J., “The neurogeometry of pinwheels as a sub-Riemannian contact structure,” J. Physiol. (Paris), 97, pp. 265–309, 2003.

    Google Scholar 

  64. Porat, B., Nehorai, A., “Localizing vapor-emitting sources by moving sensors,” IEEE Trans. Signal Process., 44(4), pp. 1018–1021, 1996.

    Article  Google Scholar 

  65. Porter, R.D., Introduction to Fibre Bundles, Marcel Dekker, New York, 1977.

    Google Scholar 

  66. Resnikoff, H.L., “Differential geometry and color perception,” J. Math. Biol., 1, pp. 97–131, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  67. Russell, R.A., Odour Detection by Mobile Robots, World Scientific, Singapore, 1999.

    Google Scholar 

  68. Shapere, A., Wilczek, F., “Geometry of self-propulsion at low Reynolds number,” Journal of Fluid Mechanics, 198, pp. 557–585, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  69. Smith, P., Drummond, T., Roussopoulos, K., “Computing MAP trajectories by representing, propagating and combining PDFs over groups,” Proceedings of the 9th IEEE International Conference on Computer Vision, Vol. 2, Nice, France, 2003, pp. 1275–1282.

    Google Scholar 

  70. Smith, S.T., “Covariance, Subspace, and Intrinsic Cram´er-Rao Bounds,” IEEE Transactions on Signal Processing, 53(5): 1610–1630, May 2005.

    Article  MathSciNet  Google Scholar 

  71. Soatto, S., “Actionable Information in Vision,” Proceedings of the International Conference on Computer Vision, Kyoto, Japan, October 2009.

    Google Scholar 

  72. Thrun, S., Burgard,W., Fox, D., Probabilistic Robotics, MIT Press, Cambridge, MA, 2005.

    Google Scholar 

  73. Tzanos, P., Zefran, M., Nehorai, A., “Information based distributed control for biochemical source detection and localization,” ICRA’05, pp. 4457–4462.

    Google Scholar 

  74. Tzanos, P., Zefran, M., “Stability analysis of information based control for biochemical source localization,” ICRA’06, pp. 3116–3121.

    Google Scholar 

  75. Tzanos, P., Zefran, M., “Locating a circular biochemical source: Modeling and control,” ICRA’07, pp. 523–528.

    Google Scholar 

  76. Vergassola1, M., Villermaux, E., Shraiman, B.I., “ ’Infotaxis’ as a strategy for searching without gradients,” Nature, 445(25), pp. 406–409, 2007.

    Google Scholar 

  77. Webster, R.J., III, Kim, J.-S., Cowan, N.J., Chirikjian, G.S., Okamura, A.M., “Nonholonomic modeling of needle steering,” Int. J. Robot. Res., 25(5–6), pp. 509–525, 2006.

    Article  Google Scholar 

  78. Williams, L.R., Jacobs, D.W., “Stochastic completion fields: A neural model of illusory contour shape and salience,” Neural Comput., 9(4), pp. 837–858, 1997.

    Article  Google Scholar 

  79. Williams, L.R., Jacobs, D.W., “Local parallel computation of stochastic completion fields,” Neural Comput., 9(4), pp. 859–881, 1997.

    Article  Google Scholar 

  80. Willsky, A.S., “Dynamical systems defined on groups: Structural properties and estimation,” Ph.D. dissertation, Dept. Aeronautics and Astronautics, MIT,, Cambridge, MA, 1973.

    Google Scholar 

  81. Zhou, Y., Chirikjian, G.S., “Probabilistic models of dead-reckoning error in nonholonomic mobile robots,” ICRA’03, Taipei, Taiwan, September 2003.

    Google Scholar 

  82. Zweck, J.,Williams, L.R., “Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions,” J. Math. Imaging Vision, 21, pp. 135–154, 2004.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chirikjian, G.S. (2012). Locomotion and Perception as Communication over Principal Fiber Bundles. In: Stochastic Models, Information Theory, and Lie Groups, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4944-9_12

Download citation

Publish with us

Policies and ethics