The Newtonian Theory of Light Propagation

  • Jean Eisenstaedt
Part of the Einstein Studies book series (EINSTEIN, volume 12)


It is generally thought that light propagation cannot be treated in the framework of Newtonian dynamics. However, at the end of the 18th century and in the context of Newton’s Principia, several papers, published and unpublished, offered a new and important corpus that represents a detailed application of Newton’s dynamics to light. In it, light was treated in precisely the same way as material particles. This most interesting application—foreshadowed by Newton himself in the Principia— constitutes a relativistic optics of moving bodies, of course based on what we nowadays refer to as Galilean relativity, and offers amost instructiveNewtonian analogy to Einsteinian special and general relativity (Eisenstaedt, 2005a; 2005b). These several papers, effects, experiments, and interpretations constitute the Newtonian theory of light propagation. I will argue in this paper, however, that this Newtonian theory of light propagation has deep parallels with some elements of 19th century physics (aberration, the Doppler effect) as well as with an important part of 20th century relativity (the optics of moving bodies, the Michelson experiment, the deflection of light in a gravitational field, black holes, the gravitational Doppler effect).


Black Hole Light Propagation Chromatic Dispersion Newtonian Theory Dark Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arago, D. F. J. (1806). Sur la vitesse de la lumière. Bibliothèque de l’Institut (Paris). Manuscrit 2033, folios 117–121.Google Scholar
  2. ——. (1853).Mémoire sur la vitesse de la lumière, luà la première classe de l’Institut le 10 décembre 1810. Académie des Sciences (Paris). Comptes Rendus, 36, 38–49.Google Scholar
  3. Bechler, Z. (1973). Newton’s Search for a Mechanistic Model of Color Dispersion: a Suggested Interpretation. Archive for History of Exact Sciences, 11, 1–37.CrossRefMathSciNetGoogle Scholar
  4. Blair, R. (1786). A proposal for ascertaining by experiments whether the velocity of light be affected by the motion of the body from which it is emitted or reflected; and for applying instruments for deciding the question to several optical and astronomical enquiries. Royal Society Manuscript L & P, VIII, 182.Google Scholar
  5. Buchwald, J. Z. (1989). The rise of the wave theory of light: optical theory and experiment in the early nineteenth century. Chicago: University of Chicago Press.Google Scholar
  6. Cantor, G. N. (1983). Optics after Newton. Theories of light in Britain and Ireland, 1704–1840. Manchester University Press.Google Scholar
  7. Clairaut, A.-C. (1741). Sur les explications cartésiennes et newtoniennes de la réfraction de la lumière. Académie Royale des Sciences (Paris).Mémoires pour 1739, 259–275.Google Scholar
  8. Delambre, J.-B. (1809). Procès-verbal de la Séance du Lundi 4 Septembre 1809 et Rapport de Delambre `a la Classe des Sciences. Sur le mémoire de M. Arago concernant la vitesse de la lumière. In Procès-verbaux des séances de l’Académie tenues depuis la fondation de l’Institut jusqu’au mois d’aoˆut 1835. Hendaye : Imprimerie de l’observatoire d’Abbadia, (1913), vol. 4, 245.Google Scholar
  9. Doppler, C. (1842). On the coloured light of the double stars and certain other stars of the heavens. Proceedings of the Royal Bohemian Society of Sciences, 2, 103–133.Google Scholar
  10. Einstein, A. (1905). Zur Elektrodynamik bewegter K‥orper. Annalen der Physik, 17, 891–921.CrossRefGoogle Scholar
  11. ——. (1907). Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462; 5, 98–99.Google Scholar
  12. ——. (1911). Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik, 35, 898–908. Translated as, On the influence of gravitation on the propagation of light. In Lorentz, H. A., et al. The Principle of Relativity.Google Scholar
  13. A. Sommerfeld, ed.W. Perrett and G. B. Jeffery, trans. London: Methuen, 1923; reprint New York: Dover, 1952, 97–108.Google Scholar
  14. Eisenstaedt, J. (1991). De l’influence de la gravitation sur la propagation de la lumière en théorie newtonienne. L’archéologie des trous noirs. Archive for History of Exact Sciences, 42, 315–386.CrossRefMathSciNetGoogle Scholar
  15. ——. (1996). L’optique balistique newtonienne `a l’épreuve des satellites de Jupiter. Archive for History of Exact Sciences, 50, 117–156.CrossRefMATHMathSciNetGoogle Scholar
  16. ——. (2005a). Light and relativity, a previously Unknown Eighteenth-Century Manuscript by Robert Blair (1748–1828). Annals of Science, 62, 347–376.CrossRefMathSciNetGoogle Scholar
  17. ——. (2005b). Avant Einstein Relativité, lumière, gravitation. Paris: Seuil.Google Scholar
  18. ——. (2007). From Newton to Einstein: a forgotten relativistic optics of moving bodies. American Journal of Physics, 75, 741–746.CrossRefMATHMathSciNetGoogle Scholar
  19. Eisenstaedt, J. and Combes, M. (2011). Arago et la vitesse de la lumière (1806–1810), un manuscrit inédit, une nouvelle analyse. Revue d’histoire des Sciences, 64, 59–120.CrossRefGoogle Scholar
  20. Fizeau, A.-H. (1870a). Des effets du mouvement sur le ton des vibrations sonores et sur la longueur d’onde des rayons de lumière. Annales de Chimie et de Physique, 19, 211–221. [Read at the Société Philomathique on December 23, 1848].Google Scholar
  21. ——. (1870b). Remarques concernant le déplacement des raies spectrales par le mouvement du corps lumineux ou de l’observateur. Académie des Sciences (Paris), Comptes Rendus, 70, 1062–1066.Google Scholar
  22. Fresnel, A. (1814a). Augustin Fresnel `a son frère Léonor. In H. de Sénarmont, É. Verdet and L. Fresnel (Eds.), OEuvres Complètes d’Augustin Fresnel, (1866–1870), vol. 2, 820–828. Paris: Imprimerie impériale.Google Scholar
  23. ——. (1814b). Lettre d’Augustin Fresnel `a son frère Léonor. In H. de Sénarmont, É. Verdet and L. Fresnel (Eds.), OEuvres Complètes d’Augustin Fresnel, (1866–1870), vol. 2, 848–851. Paris: Imprimerie impériale.Google Scholar
  24. ——. (1815). PremierMémoire sur la Diffraction de la Lumière. InH. de Sénarmont, É. Verdet and L. Fresnel (Eds.), OEuvres Complètes d’Augustin Fresnel, (1866–1870), vol. 1, 9–37. Paris: Imprimerie impériale.Google Scholar
  25. —. (1818). Lettre d’Augustin Fresnel à Francois Arago. In H. de Sénarmont, É. Verdet and L. Fresnel (Eds.), OEuvres Complètes d’Augustin Fresnel, (1866–1870), vol. 2, 627–636.Google Scholar
  26. Gibbons, G. (1979). The man who invented black holes. New Scientist, June 28 1979, 82 (1161), 1101.Google Scholar
  27. Hirosige, T. (1976). The ether problem, the mechanistic worldview, and the origins of the theory of relativity. Historical Studies in the Physical Sciences, 7, 3–82.Google Scholar
  28. Jaki, S. L. (1978). J.G. von Soldner and the gravitational bending of light with an English translation of his essay on it published in 1801. Foundations of Physics, 8(11–12), 927–950.Google Scholar
  29. Jungnickel, C., and McCormmach, R. (1999). Cavendish: The Experimental Life. Cranbury, NJ: Bucknell.Google Scholar
  30. Kuhn, T.S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press, 3rd ed., 1996, 102–103.Google Scholar
  31. Laplace, P.-S. (1796). Exposition du systême du monde. Ed. originale. 2 vols. Paris: Imprimerie du Cercle-Social.Google Scholar
  32. ——. (1808). Exposition du système du monde. 3 ed. Paris: Courcier. McCormmach, R. (1968). John Michell and Henry Cavendish: weighing the stars. The British Journal for the History of Science, 4, 126–155.Google Scholar
  33. Michell, J. (1784). On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other Data should be procured from observations, as would be farther necessary for that purpose. By the Rev. John Michell, B. D. F. R. S. In a letter to HenryCavendish,Esq. F. R. S. andA. S. Royal Society of London. Philosophical Transactions, 74, 35–57.Google Scholar
  34. Newton, I. (1687). The Principia: mathematical principles of natural philosophy. A New Translation. Sir I. B. Cohen and A. Whitman. University of California Press, 1999.Google Scholar
  35. Priestley, J. (1772). The history and present state of discoveries relating to vision, light and color. London. Kraus Reprint Co. Millwood, NY.Google Scholar
  36. Robison, J. (1797). Optics. Encyclopædia Britannica, 3rd ed., vol. 13, 231–364.Google Scholar
  37. R‥omer, O. (1676). Demonstration touchant le mouvement de la lumière. . . Journal des Savants, 7.XII 1676, 233–236.Google Scholar
  38. Rosmorduc, J. (1981). Léxpérience de Fizeau. Bulletin de l’Union des Physiciens, 632, 841–857.Google Scholar
  39. Schaffer, S. (1979). John Michell and Black Holes. Journal for History of Astronomy, 10, 42–43.Google Scholar
  40. s’Gravesande, W. J. (1747). Elémens de Physique ou Introduction `a la philosophie de Newton. Trad. C. F. R. de Virloy’s. Paris: C. A. Jombert. 2 vol.Google Scholar
  41. Shapiro, A. E. (1993). Fits, Passions, and Paroxysms: Physics, Method and Chemistry and Newton’s Theories of Colored Bodies and Fits of Easy Reflection. Cambridge: Cambridge University Press.Google Scholar
  42. Short, J. (1754). Report to the Society. Royal Society of London. Philosophical Transactions for the year 1753, 48, 268–270.Google Scholar
  43. Soldner, J. G. von. (1800). Etwas ‥uber die relative Bewegung der Fixsterne; nebst einem Anhange ‥uber die Aberration derselben. Astronomisches Jahrbuch f¨ur das Jahr 1803, 185–194.Google Scholar
  44. Turnbull, H. W., Scott, J. F., Hall, A. R. and Tilling, L., eds. and trans. (1959–1977). The Correspondence of Isaac Newton. 7 vols. Cambridge: Cambridge University Press.Google Scholar
  45. Whiteside, D. T. (1980). Kepler, Newton and Flamsteed on Refraction Through a ‘Regular Air’: the Mathematical and the Practical. Centaurus, 24, 288–315.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • Jean Eisenstaedt
    • 1
  1. 1.SYRTE, Observatoire de Paris, CNRS, UPMCParisFrance

Personalised recommendations