Advertisement

The Issue of the Beginning in Quantum Gravity

  • Abhay Ashtekar
Chapter
Part of the Einstein Studies book series (EINSTEIN, volume 12)

Abstract

Treatises on Time, the Beginning and the End date back at least twenty-five centuries. Does the flow of time have an objective, universal meaning beyond human perception? Or, is it fundamentally only a convenient, and perhaps merely psychological, notion? Are its properties tied to the specifics of observers such as their location and state of motion? Did the physical universe have a finite beginning, or has it been evolving eternally? Leading thinkers across cultures meditated on these issues and arrived at definite but strikingly different answers. For example, in the sixth century B.C.E., Gautama Buddha taught that ‘a period of time’ is a purely conventional notion; time and space exist only in relation to our experience, and the universe is eternal. In the Christian thought, however, the universe had a finite beginning, and there was debate as to whether time represents ‘movement’ of bodies or whether it flows only in the soul. In the fourth century C.E., St. Augustine held that time itself started with the world.

Keywords

Quantum Gravity Classical Trajectory Loop Quantum Gravity Quantum Geometry Loop Quantum Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashtekar, A. 1986. New variables for classical and quantum gravity. Phys. Rev. Lett. 57: 2244–2247.CrossRefMathSciNetGoogle Scholar
  2. ——. 1987. New Hamiltonian formulation of general relativity. Phys. Rev. D36: 1587–1602.MathSciNetGoogle Scholar
  3. ——. 1991. Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate, chap. 10. Singapore:World Scientific.Google Scholar
  4. ——. 2005. Gravity and the quantum. New J. Phys. 7: 198; arXiv:gr-qc/0410054.Google Scholar
  5. Ashtekar, A., Bojowald, M. and Lewandowski, J. 2003. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7: 233–268; gr-qc/0304074.Google Scholar
  6. Ashtekar, A., Bojowald, M. andWillis, J. 2004. Corrections to Friedmann equations induced by quantum geometry, IGPG preprint.Google Scholar
  7. Ashtekar, A. and Lewandowski, J. 1994. Representation theory of analytic holonomy algebras, in Knots and Quantum Gravity, ed J. Baez. Oxford: Oxford University Press.Google Scholar
  8. ——. 1995a. Differential geometry on the space of connections using projective techniques. J. Geom. Phys. 17: 191–230.CrossRefMATHMathSciNetGoogle Scholar
  9. ——. 1995b. Projective techniques and functional integration. J. Math. Phys. 36: 2170–2191.CrossRefMATHMathSciNetGoogle Scholar
  10. ——. 2004. Background independent quantum gravity: A status report. Class. Quant. Grav. 21: R53–R152; arXiv:gr-qc/0404018.Google Scholar
  11. Ashtekar, A., Pawlowski, T. and Singh, P. 2006a. Quantum nature of the big bang. Phys. Rev. Lett. 96: 141301; arXiv:gr-qc/0602086.Google Scholar
  12. ——. 2006b. Quantum nature of the big bang: An analytical and numerical investigation I; arXiv:gr-qc/0604013.Google Scholar
  13. ——. 2006c. Quantum nature of the big bang: Improved dynamics; arXiv: gr-qc/0607039.Google Scholar
  14. Ashtekar, A. and Singh, P. 2011. Loop quantum cosmology: A Status Report. Class. Quantum Grav. arXiv:1108.0893 (in preparation).Google Scholar
  15. Baez, J. C. 1994. Generalized measures in gauge theory. Lett. Math. Phys. 31: 213–223.CrossRefMATHMathSciNetGoogle Scholar
  16. ——. 1996. Spin networks in non-perturbative quantum gravity, in The Interface of Knots and Physics, ed. Kauffman L. Providence: American Mathematical Society, pp. 167–203.Google Scholar
  17. Bojowald, M. 2001. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86: 5227–5230; arXiv:gr-qc/0102069.Google Scholar
  18. ——. 2002. Isotropic loop quantum cosmology. Class. Quant. Grav. 19: 2717–2741; arXiv:gr-qc/0202077.Google Scholar
  19. ——. 2005. Loop quantum cosmology. Liv. Rev. Rel. 8: 11; arXiv:gr-qc/0601085. ojowald, M., Hernandez, H. H. and Morales-Tecotl, H. A. 2001. Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quant. Grav. 18: L117–L127; arXiv:gr-qc/0511058.Google Scholar
  20. Fleishchack, C. 2004. Representations of the Weyl algebra in quantum geometry; arXiv:math-ph/0407006.Google Scholar
  21. Gasperini, M. and Veneziano, G. 2003. The pre-big bang scenario in string cosmology. Phys. Rep. 373: 1; arXiv:hep-th/0207130.Google Scholar
  22. Khoury, J., Ovrut, B. A., Steinhardt, P. J. and Turok, N. 2001. The ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D64, 123522, hep-th/0103239.Google Scholar
  23. Khoury, J., Ovrut, B., Seiberg, N., Steinhardt, P. J. and Turok, N. 2002. From big crunch to big bang. Phys. Rev. D65, 086007, hep-th/0108187.Google Scholar
  24. Lauscher, O. and Reuter, M. 2005. Asymptotic safety in quantum Einstein gravity: nonperturbative renormalizability and fractal spacetime structure; arXiv: hep-th/0511260.Google Scholar
  25. Lewandowski, J., Okolow, A., Sahlmann, H. and Thiemann, T. 2005. Uniqueness of diffeomorphism invariant states on holonomy flux algebras; arXiv: gr-qc/0504147.Google Scholar
  26. Marolf, D. 1995a. Refined algebraic quantization: Systems with a single constraint; arXives:gr-qc/9508015.Google Scholar
  27. ——. 1995b. Quantum observables and recollapsing dynamics. Class. Quant. Grav. 12: 1199–1220.Google Scholar
  28. Marolf, D. and Mour˜ao, J. 1995. On the support of the Ashtekar-Lewandowski measure. Commun. Math. Phys. 170: 583–606.Google Scholar
  29. Percacci, R. and Perini, D. 2003. Asymptotic safety of gravity coupled to matter. Phys. Rev. D68: 044018.Google Scholar
  30. Rovelli, C. 2004. Quantum Gravity. Cambridge: Cambridge University Press.Google Scholar
  31. Rovelli, C. and Smolin, L. 1995. Spin networks and quantum gravity. Phys. Rev. D52: 5743–5759.MathSciNetGoogle Scholar
  32. Thiemann, T. 2003. The Phoenix project: Master constraint program for loop quantum gravity; arXiv:gr-qc/0305080.Google Scholar
  33. ——. 2007. Introduction to Modern Canonical Quantum General Relativity. Cambridge: Cambridge University Press.Google Scholar
  34. Willis, J. 2004. On the low energy ramifications and a mathematical extension of loop quantum gravity. Ph.D. dissertation, The Pennsylvania State University, University Park, PA.Google Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • Abhay Ashtekar
    • 1
    • 2
  1. 1.Institute for Gravitational Physics and GeometryPenn State UniversityUniversity ParkUSA
  2. 2.Institute for Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations