The Border Between Relativity and Quantum Theory

  • Tevian Dray
Part of the Einstein Studies book series (EINSTEIN, volume 12)


Many efforts have been made to fulfill Einstein’s dream of unifying general relativity and quantum theory, including the study of quantum field theory in curved space, supergravity, string theory, twistors, and loop quantum gravity. While all of these approaches have had notable successes, unification has not yet been achieved. After a brief tour of the progress which has been made, we focus on the role played by spinors in several of these approaches, suggesting that spinors may be the key to combining classical relativity with quantum physics. We conclude by outlining one possible generalization of traditional spinor language, involving the octonions, and speculate on its relevance to quantum gravity.


Black Hole String Theory Quantum Theory Quantum Gravity Curve Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnowitt, R., Deser, S. and Misner, C. W. (1962). The Dynamics of General Relativity. In Gravitation: An Introduction to Current Research. L. Witten, ed. New York:Wiley, 227–265.Google Scholar
  2. Ashtekar, Abhay (1986). New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 57, 2244–2247.CrossRefMathSciNetGoogle Scholar
  3. —— (2012). The Issue of the Beginning in Quantum Gravity. Einstein and the Changing Worldviews of Physics. New York: Birkhäuser Science (Einstein Studies, Volume 12).Google Scholar
  4. Ashtekar, A. and Magnon, Anne (1975). Quantum Field Theory in Curved Space-Times. Proc. Roy. Soc. A346, 375–394.MathSciNetGoogle Scholar
  5. Baylis, William E. (1999). Electrodynamics: A Modern Geometric Approach. Boston: Birkhäuser.Google Scholar
  6. Bergmann, Peter G. (1949). Non-Linear Field Theories. Phys. Rev. 75, 680–685.CrossRefMATHMathSciNetGoogle Scholar
  7. Bombelli, L., Lee, J., Meyer, D. and Sorkin, R. (1987). Spacetime as a Causal Set. Phys. Rev. 59, 521–524.MathSciNetGoogle Scholar
  8. Bronstein, Matvey Petrovich (1933). K Voprosy o vozmozhnoy teorii mira kak tselogo. (On the Question of a Possible Theory of the World as a Whole.) Usp. Astron. Nauk Sb. 3, 3–30.Google Scholar
  9. Chamseddine, Ali H. and Connes, Alain (1996). Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model. Phys. Rev. Lett. 77, 4868–4871.CrossRefMATHMathSciNetGoogle Scholar
  10. Davies, P. C. W. (1976). Scalar Particle Production in Schwarzschild and Rindler Metrics. J. Phys. A8, 609–616.Google Scholar
  11. DeWitt, Bryce S. (1964). Theory of Radiative Corrections for Non-Abelian Gauge Fields. Phys. Rev. Lett. 12, 742–746.CrossRefMathSciNetGoogle Scholar
  12. —— (1967). Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 160, 1113–1148.MATHGoogle Scholar
  13. Dirac, P. A. M. (1950). Generalized Hamiltonian Dynamics. Can. J. Math. Phys. 2, 129–148.CrossRefMATHMathSciNetGoogle Scholar
  14. Dray, Tevian and Manogue, Corinne A. (1999). The Exceptional Jordan Eigenvalue Problem. Int. J. Theor. Phys. 38, 2901–2916.CrossRefMATHMathSciNetGoogle Scholar
  15. —— (2000). Quaternionic Spin. In Clifford Algebras and their Applications in Mathematical Physics. Rafał Abłamowicz and Bertfried Fauser, eds. Boston: Birkhäuser, 29–46.Google Scholar
  16. Dray, Tevian, Renn, Jürgen and Salisbury, Donald C. (1983). Particle Creation with Finite Energy Density. Lett. Math. Phys. 7, 145–153.CrossRefMathSciNetGoogle Scholar
  17. Einstein, Albert (1905a). U‥ ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148.CrossRefGoogle Scholar
  18. ——(1905b). U‥ ber die von der molekularkinetischen Theorie derWärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560.Google Scholar
  19. —— (1905c). Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921.Google Scholar
  20. —— (1905d). Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? Ann. Phys. 18, 639–641.Google Scholar
  21. Fairlie, David B. and Manogue, Corinne A. (1986). Lorentz Invariance and the Composite String. Phys. Rev. D34, 1832–1834.MathSciNetGoogle Scholar
  22. —— (1987). A Parameterization of the Covariant Superstring. Phys. Rev. D36, 475–479.MathSciNetGoogle Scholar
  23. Feynman, R. (1963). Quantum Theory of Gravitation. Acta Phys. Pol. 24, 697.MathSciNetGoogle Scholar
  24. Fulling, S. A. (1973). Nonuniqueness of Canonical Field Quantization inGoogle Scholar
  25. Riemannian Space-Time. Phys. Rev. D7, 2850–2862.Google Scholar
  26. Green, M. B. and Schwarz, J. H. (1984). Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory Requires SO(32). Phys. Lett. 149B, 117–122.MathSciNetGoogle Scholar
  27. Hartle, J. B. and Hawking, S. W. (1983).Wave Function of the Universe. Phys. Rev. D28, 2960–2975.MathSciNetGoogle Scholar
  28. Hawking, S. W. (1975). Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220.CrossRefMathSciNetGoogle Scholar
  29. ’t Hooft, G. (1973). An Algorithm for the Poles at Dimension Four in the Dimensional Regularization Procedure. Nucl. Phys. B62, 444–460.Google Scholar
  30. Jacobson, T. and Smolin, L. (1988) Nonperturbative Quantum Geometries. Nucl. Phys. B299, 295–345.CrossRefMathSciNetGoogle Scholar
  31. Jordan, P., von Neumann, J. and Wigner, E. (1934). On an Algebraic Generalization of the Quantum Mechanical Formalism. Ann. Math. 35, 29–64.CrossRefGoogle Scholar
  32. Karlhede, A. (1980). A Review of the Equivalence Problem. Gen. Rel. Grav. 12, 693–707.CrossRefMATHMathSciNetGoogle Scholar
  33. Manogue, Corinne A. and Dray, Tevian (1999). Dimensional Reduction. Mod. Phys. Lett. A14, 93–97.Google Scholar
  34. Manogue, Corinne A. and Sudbery, Anthony (1989). General Solutions of Covariant Superstring Equations of Motion. Phys. Rev. D40, 4073–4077.MathSciNetGoogle Scholar
  35. Newman, Ezra T. and Penrose, Roger (1962). An Approach to Gravitational Radiation by a Method of Spin Coefficients. J. Math. Phys. 3, 566–768.CrossRefMathSciNetGoogle Scholar
  36. Penrose, R. (1967). Twistor Algebra. J. Math. Phys. 8, 345–366.CrossRefMATHMathSciNetGoogle Scholar
  37. —— (1986). Gravity and State Vector Reduction. In Quantum Concepts in Space and Time. R. Penrose and C. J. Isham, eds. Oxford: Clarendon Press, 129–146.Google Scholar
  38. Renn, J. (2007). Classical Physics in Disarray: The Emergence of the Riddle of Gravitation. In The Genesis of General Relativity, vol. 1: Einsteins’s Zurich Notebook: Introduction and Source. Jürgen Renn, ed. Dordrecht: Springer, 31.Google Scholar
  39. Rovelli, Carlo (2004). Quantum Gravity. Cambridge: Cambridge University Press.Google Scholar
  40. Schray, Jörg (1996). The General Classical Solution of the Superparticle. Class. Quant. Grav. 13, 27–38.CrossRefMATHMathSciNetGoogle Scholar
  41. Smolin, Lee (2004). Private communication.Google Scholar
  42. Sparling, George A. J. (2006). Spacetime is spinorial; new dimensions are timelike. University of Pittsburgh preprint. Scholar
  43. Stachel, John (1999). Space-Time Structures: What’s the Point. Proceedings of the Minnowbrook Symposium on the Structure of Space-Time (Blue Mountain Lake, NY; 5/28–31/99). Scholar
  44. Unruh,W. G. (1976). Notes on Black Hole Evaporation. Phys. Rev. D14, 870–892.Google Scholar
  45. —— (2005). What is a Particle? Quantum Field Theory Meets General Relativity.Google Scholar
  46. Talk given at the 7th International Conference on the History of General Relativity, Tenerife.Google Scholar
  47. Wald, Robert M. (1994). Quantum Field Theory in Curved Spacetimes and Black Hole Thermodynamics. Chicago: University of Chicago Press.Google Scholar
  48. —— (2012). The History and Present Status of Quantum Field Theory in CurvedGoogle Scholar
  49. Spacetime. Einstein and the Changing Worldviews of Physics. New York: Birkhäuser Science (Einstein Studies, Volume 12).Google Scholar
  50. Wilczek, Frank (2005). Physics: Treks of Imagination. Science 307 (11 February 2005), 852–853.Google Scholar
  51. Witten, Edward (2004). Perturbative Gauge Theory as a String Theory in Twistor Space. Commun. Math. Phys. 252, 189–258.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • Tevian Dray
    • 1
  1. 1.Oregon State UniversityCorvallisUSA

Personalised recommendations