The History and Present Status of Quantum Field Theory in Curved Spacetime

  • Robert M. Wald
Part of the Einstein Studies book series (EINSTEIN, volume 12)


Quantum field theory in curved spacetime is the theory of quantum fields propagating in a classical curved spacetime. Here the spacetime is described, in accord with general relativity, by a manifold,M, on which is defined a Lorentz metric, g ab . In order to ensure that classical dynamics is well defined on (M,g ab ), we restrict attention to the case where (M,g ab ) is globally hyperbolic (see, e.g., (Wald 1984)).


Black Hole Vacuum State Curve Spacetime Minkowski Spacetime White Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashtekar, A. and Magnon, A. 1975. Proc. Roy. Soc. London A346: 375.MathSciNetGoogle Scholar
  2. Brunetti, R. and Fredenhagen, K. 2000. Commun. Math. Phys. 208: 623.MATHMathSciNetCrossRefGoogle Scholar
  3. Brunetti, R., Fredenhagen, K. and Kohler,M. 1996. Commun. Math. Phys. 180: 633.MATHMathSciNetCrossRefGoogle Scholar
  4. Brunetti, R., Fredenhagen, K. and Verch, R. 2003. Commun. Math. Phys. 237: 31.MATHMathSciNetGoogle Scholar
  5. Duistermaat, J. J. and Hormander, L. 1972. Acta Math. 128: 183.MATHMathSciNetCrossRefGoogle Scholar
  6. Hawking, S. W. 1975. Commun. Math. Phys. 43: 199.MathSciNetCrossRefGoogle Scholar
  7. Hollands, S. and Wald, R. M. 2001. Commun. Math. Phys. 223: 289.MATHMathSciNetCrossRefGoogle Scholar
  8. ——. 2002. Commun. Math. Phys. 231: 309.MATHMathSciNetCrossRefGoogle Scholar
  9. ——. 2003. Commun. Math. Phys. 237: 123.MATHMathSciNetGoogle Scholar
  10. ——. 2005. Rev. Math. Phys. 17: 227.MATHMathSciNetCrossRefGoogle Scholar
  11. Hormander, L. 1985. The Analysis of Linear Partial Differential Operators I. Berlin: Springer-Verlag.Google Scholar
  12. Kay, B. S. 1985. Commun. Math. Phys. 62: 55MathSciNetGoogle Scholar
  13. ——. 1978. Commun. Math. Phys. 100: 57.MathSciNetGoogle Scholar
  14. Parker, L. 1966. Ph.D. thesis, Harvard University (unpublished).Google Scholar
  15. ——. 1969. Phys. Rev. 183: 1057.CrossRefGoogle Scholar
  16. Penrose, R. 1969. Rev. Nuovo Cimento 1: 252.Google Scholar
  17. Radzikowski, M. J. 1992. Ph.D. thesis, Princeton University (unpublished).Google Scholar
  18. ——. 1996. Commun. Math. Phys. 179: 529.CrossRefGoogle Scholar
  19. Sewell, G. L. 1982. Ann. Phys. 141: 201.MathSciNetGoogle Scholar
  20. Starobinski, A. A. 1973. JETP 37: 28.Google Scholar
  21. Unruh,W. G. 1974. Phys. Rev. D10: 3194.Google Scholar
  22. ——. 1976. Phys. Rev. D14: 870.Google Scholar
  23. Wald, R. M. 1984. General Relativity. Chicago: University of Chicago Press.Google Scholar
  24. ——. 1994. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago: University of Chicago Press.Google Scholar
  25. Wightman, A. S. and Garding, L. 1964. Ark. Fys. 28: 129.Google Scholar
  26. Zel’dovich, Ya. B. 1971. JETP Lett. 14: 180.Google Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • Robert M. Wald
    • 1
  1. 1.Enrico Fermi Institute and Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations