Singularity Theorems in General Relativity: Achievements and Open Questions

  • José M. M. Senovilla
Part of the Einstein Studies book series (EINSTEIN, volume 12)


In this short note, written by a theoretical physicist, not a historian, I would like to present a brief overview of the acclaimed singularity theorems, which are often quoted as one of the greatest theoretical accomplishments in general relativity and mathematical physics.


Singularity Theorem Causality Condition Trap Surface Physical Review Letter Strong Energy Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandrasekhar, Subrahmanyan (1931) “The maximum mass of ideal white dwarfs” Astrophysical Journal 74 81–82.CrossRefMATHGoogle Scholar
  2. Chinea, F. Javier, Fern’andez-Jambrina, Leonardo and Senovilla, Jos’e M. M. (1992) “Singularity-free space-time” Physical Review D 45 481–486.CrossRefMathSciNetGoogle Scholar
  3. Dadhich, Naresh (2007) “Singularity: Raychaudhuri equation once again” In Raychaudhuri equation and its role in Modern Cosmology, Pramana special issue dedicated to A. K. Raychaudhuri, Pramana 69 23–29.Google Scholar
  4. Einstein, Albert (1939) “On a stationary system with spherical symmetry consisting of many gravitating masses” Annals of Mathematics 40 922–936.CrossRefMathSciNetGoogle Scholar
  5. —— (1941) “Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities” Revista de la Universidad Nacional de Tucumán A2 11–16.Google Scholar
  6. Ellis, George F. R. (1998) “Contributions of K. Gödel to Relativity and Cosmology” In Gödel ’96: Foundations of Mathematics, Computer Science and Physics: Kurt Gödel’s Legacy Lectures Notes in Logic 6, Petr Hajek ed. Berlin: Springer, 34–49.Google Scholar
  7. Friedman, Alexander (1922) “Ü ber die Krümmung des Raumes” Zeitschrift für Physik 10 377–386;CrossRefGoogle Scholar
  8. Translated and reproduced in (1999) General Relativity and Gravitation 31 1991–2000.Google Scholar
  9. —— (1924) “Ü ber die Mo‥glichkeit einer Welt mit konstanter negativer Krümmung des Raumes” Zeitschrift f¨ur Physik 21 326–332;Google Scholar
  10. Translated and reproduced in (1999) General Relativity and Gravitation 31 2001–2008.Google Scholar
  11. Garc’ıa-Parrado, Alfonso and Senovilla, Jos’e M. M. (2005) “Causal structures and causal boundaries” (Topical Review) Classical and Quantum Gravity 22 R1–R84.Google Scholar
  12. Geroch, Robert (1968) “What is a singularity in general relativity?” Annals of Physics (New York) 48 526–540.CrossRefMATHGoogle Scholar
  13. Gödel, Kurt (1949) “An example of a new type of cosmological solution of Einstein’s field equations of gravitation” Reviews in Modern Physics 21 447–450.CrossRefMATHGoogle Scholar
  14. Hawking, Stephen W. and Ellis, Georges F. R. (1973) The Large Scale Structure of Space-time. Cambridge: Cambridge University Press.Google Scholar
  15. Hawking, Stephen W. and Penrose, Roger (1970) “The singularities of gravitational collapse and cosmology” Proceedings of the Royal Society London A314 529–548.MathSciNetGoogle Scholar
  16. Lemaˆıtre, Georges (1927) “Un Universe homog`ene de masse constante et de rayon croissant, rendant compte de la vittese radiale des n’ebuleuses extragalactiques” Annales de la Soci´et´e Scientifique de Bruxelles A47 49–59.Google Scholar
  17. Maddox, John (1990) “Another gravitational solution found” Nature 345 201. Maeda, Kengo and Ishibashi, Akihiro (1996) “Causality violation and singularities” 13 2569–2576.Google Scholar
  18. Oppenheimer, Julius Robert and Snyder, Hartland (1939) “On continued gravitational contraction” Physical Review 56 455–459.CrossRefMATHGoogle Scholar
  19. Penrose, Roger (1965) “Gravitational collapse and space-time singularities” Physical Review Letters 14 57–59.CrossRefMATHMathSciNetGoogle Scholar
  20. Raychaudhuri, Amal Kumar (1955) “Relativistic cosmology I” Physical Review 98 Google Scholar
  21. 1123–1126.Google Scholar
  22. —— (1998) “Theorem for non-rotating singularity-free universes” Physical Review Letters 80 654–655.Google Scholar
  23. Senovilla, Jos’e M. M. (1990) “New class of inhomogeneous cosmological perfectfluid solutions without big-bang singularity” Physical Review Letters 64 2219–2221.CrossRefMATHMathSciNetGoogle Scholar
  24. —— (1998a) “Singularity theorems and their consequences” (Review) General Relativity and Gravitation 30 701–848.Google Scholar
  25. —— (1998b) “Comment on ‘Theorem for non-rotating singularity-free universes”’ Physical Review Letters 81 5032.Google Scholar
  26. —— (2007a) “The Schwarzschild solution: corrections to the editorial note” General Relativity and Gravitation 39 685–693.Google Scholar
  27. —— (2007b) “A singularity theorem based on spatial averages” In Raychaudhuri equation and its role in Modern Cosmology, Pramana special issue dedicated to A. K. Raychaudhuri, Pramana 69 31–47.Google Scholar
  28. Tipler, Frank J., Clarke, Chris J. S. and Ellis, George F. R. (1980) “Singularities and Horizons—A Review Article” In General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein. Alan Held ed. New York: Plenum Press, 97–206.Google Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • José M. M. Senovilla
    • 1
  1. 1.Universidad del País VascoBilbaoSpain

Personalised recommendations