Skip to main content

Primordial Magnetic Fields and Cosmic Microwave Background

  • Chapter
  • First Online:
Book cover Einstein and the Changing Worldviews of Physics

Part of the book series: Einstein Studies ((EINSTEIN,volume 12))

  • 1961 Accesses

Abstract

Magnetic fields could play an important role in determining the parameters of the CMB (Cosmic Microwave Background Radiation). If there were significant primordial fields our interpretation of the spectrum of anisotropies of temperature and polarization which we use to estimate the parameter defining a cosmological model would require modification. For such an influence to be detected primordial commoving magnetic field strengths in the range 10–9–10–8 Gauss are needed, values compatible with at least some of the astrophysical restrictions.Magnetic fields contribute to the energy-momentum tensor and are therefore a source of curvature. The LSS (Last Scattering Surface) could be crossed by radiation energy density filaments, inheritors of primordial magnetic flux tubes. The possibilities of measuring magnetic field within the space mission Planck are examined here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, Jenni, Danielsson, Ulf H., Grasso, Dario and Rubinstein, H’ector (1996). “Distortion of the acoustic peaks in the CMBR due to a primordial magnetic field”. Physics Letters B 338, 253–258.

    Article  Google Scholar 

  • Banerjee, Robi and Jedamzik, Karsten (2004). “The evolution of cosmic magnetic fields: fromthe very early Universe, to recombination, to the present”. Physical Review D 70, id. 123003.

    Google Scholar 

  • Battaner, Eduardo (1998). “The fractal octahedron network of the large scale structure”. Astronomy and Astrophysics 334, 770–771.

    Google Scholar 

  • Battaner, Eduardo and Florido, Estrella (2000). “The rotation curve of spiral galaxies and its cosmological implications”. Fundamentals of Cosmic Physics 21, 1–154.

    Google Scholar 

  • ——. (1998). “Magnetic fields and large scale structure in a hot Universe. IV. The egg-carton Universe”. Astronomy and Astrophysics 338, 383–385.

    Google Scholar 

  • ——. (2009). “Magnetic Fields in the Early Universe” in Cosmic Magnetic Fields: from Planets, to Stars and Galaxies. Proc. of the International Astronomical Union, IAU Symp. 259, p. 529–538.

    Google Scholar 

  • Battaner, Eduardo, Florido, Estrella and Garcia-Ruiz, Juan M. (1997). “Magnetic fields and large scale structure in a hot Universe. III. The polyhedric network”. Astronomy and Astrophysics 327, 8–10.

    Google Scholar 

  • Battaner, Eduardo, Florido, Estrella and Jimenez-Vicente, Jorge (1997). “Magnetic fields and large scale structure in a hot universe. I. General equations”. Astronomy and Astrophysics 326, 13–22.

    Google Scholar 

  • Battaner, Eduardo and Lesch, Harald (2000). “On the physics of primordial magnetic fields”. Anales de F´ısica 95, 213–225.

    Google Scholar 

  • Battaner, Eduardo, Lesch, Harald and Florido, Estrella (1998). “Magnetic fields and rotation of spiral galaxies”. Anales de F´ısica 94, 98–102.

    Google Scholar 

  • Brandenburg, Axel, Enqvist, Kari and Olesen, Poul (1996). “Large-scale magnetic fields from hydromagnetic turbulence in the very early universe”. Physical Review D 54, 1291–1300.

    Article  Google Scholar 

  • Chandrasekhar, Subrahmanyan and Fermi, Enrico (1953). “Problems of gravitational stability in the presence of a magnetic field”. Astrophysical Journal 118, 116.

    Article  MathSciNet  Google Scholar 

  • Clarke, Tracy E., Kronberg, Phil P. and B‥ohringer, Hans (2001). “A new radio-X-ray probe of galaxy cluster magnetic fields”. Astrophysical Journal 547, L111–L114.

    Google Scholar 

  • Coles, Peter (1992). “Primordial magnetic fields and the large-scale structure of the Universe”. Comments on Astrophysics 16, 45.

    Google Scholar 

  • Dowker, Fay, Gauntlett, Jerome P., Giddings, Steven B. and Horowitz, Gary T. (1994). “Pair creation of extremal black holes and Kaluza-Klein monopoles”. Physical Review D 50, 2662–2679.

    Article  MathSciNet  Google Scholar 

  • Enqvist, K. and Olesen, Poul (1993). “On primordial magnetic fields of electroweak origin”. Physics Letters B 319, 178–185.

    Article  Google Scholar 

  • Fermi, Enrico (1949). “On the origin of the cosmic radiation”. Physical Review 75, 1169–1174.

    Article  MATH  Google Scholar 

  • Florido, Estrella and Battaner, Eduardo (1997). “Magnetic fields and large-scale structure in a hot universe. II. Magnetic flux tubes and filamentary structure”.

    Google Scholar 

  • Astronomy and Astrophysics 327, 1–7.

    Google Scholar 

  • Gasperini, Maurizio, Giovannini, Massimo and Veneziano, Gabriele (1995). “Primordial magnetic fields from string cosmology”. Physical Review Letters 75, 3796–3799.

    Article  Google Scholar 

  • Gheerardyn, Jos and Janssen, Bert (2003). “Probes in fluxbranes and supersymmetry breaking through Hodge-duality”. Physics Letters B 577, 263–272.

    Article  MathSciNet  Google Scholar 

  • Gibbons, Gary W. and Maeda, Kei-Ichi (1988). “Black holes and membranes in higher-dimensional theories with dilation fields”. Nuclear Physics B 298, 741–775.

    Article  MathSciNet  Google Scholar 

  • Gibbons, Gary W. and Wiltshire, David L. (1987). “Spacetime as a membrane in higher dimensions”. Nuclear Physics B 287, 717–742.

    Article  MathSciNet  Google Scholar 

  • Giovannini, Massimo (2001). “Thick branes and Gauss-Bonnet self-interactions”. Physical Review D 64, 124004.

    Article  MathSciNet  Google Scholar 

  • ——. (2003). “Assigning quantum-mechanical initial conditions to cosmological perturbations”. Classical and Quantum Gravity 20, 5455–5473.

    Article  MATH  MathSciNet  Google Scholar 

  • ——. (2006). “Magnetized CMB anisotropies”. Classical and Quantum Gravity 23, R1–R44.

    Article  MATH  MathSciNet  Google Scholar 

  • Grasso, Dario and Rubinstein, Hector R. (1996). “Revisiting nucleosynthesis constraints on primordial magnetic fields”. Physics Letters B 379, 73–79.

    Article  Google Scholar 

  • Harari, Diego D and Hayward, Justin D. and Zaldarriaga, Matias (1997). “Depolarization of the cosmic microwave background by a primordial magnetic field and its effect upon temperature anisotropy”. Physical Review D 55, 1841–1850.

    Article  Google Scholar 

  • Harrison, Edward H. (1973). “Magnetic fields in the early Universe”. Monthly Notices of Royal Astronomical Society 165, 185.

    Google Scholar 

  • Hogan, Craig J. (1983). “Magnetohydrodynamic effects of a first-order cosmological phase transition”. Physical Review Letters 51, 1488–1491.

    Article  Google Scholar 

  • Jedamzik, Karsten, Katalini’c, Visnja and Olinto, Angela V. (1998). “Damping of cosmic magnetic fields”. Physical Review D 57, 3264–3284.

    Article  Google Scholar 

  • ——. (2000). “Limit on primordial small-scale magnetic fields from cosmic microwave background”. Physical Review Letters 85, 700–703.

    Article  Google Scholar 

  • Kosowsky, Arthur and Loeb, Abraham (1996). “Faraday rotation of microwave background polarization by a primordial magnetic field”. Astrophysical Journal 461, 1.

    Article  Google Scholar 

  • Kosowsky, Arthur, Kahniashvili, Tina, Laurelashvili, George and Ratra, Bharat (2005). “Faraday rotation of the cosmic microwave background polarization by a stochastic magnetic field”. Physical Review D 71, 043006.

    Article  Google Scholar 

  • Kronberg, Philipp P. (1994). “Extragalactic magnetic fields”. Reports on Progress in Physics 57, 325–382.

    Article  Google Scholar 

  • ——. (2009). “Magnetic Field Transport from AGN Cores to Jets, Lobes, and the IGM” in Cosmic Magnetic Fields: from Planets, to Stars and Galaxies. Proc. of the International Astronomical Union, IAU Symp. 259, p. 499–508.

    Google Scholar 

  • Kronberg, Philipp P. and Perry, Jason J. (1982). “Absorption lines, Faraday rotation, and magnetic field estimates for QSO absorption–line clouds”. Astrophysical Journal 263, 518–532.

    Article  Google Scholar 

  • Kulsrud, Russell M. and Anderson, Stephen W. (1992). “The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic fields”. Astrophysical Journal 396, 606–630.

    Article  Google Scholar 

  • Lesch, Harald and Birk, Guido T. (1998). “Can large-scale magnetic fields survive during the pre-recombination era of the universe?” Physics of Plasmas 5, 2773–2776.

    Article  Google Scholar 

  • Lesch, Harald and Chiba, Masashi (1997). “On the origin and evolution of Galactic magnetic fields”. Fundamentals of Cosmic Physics 18, 273–368.

    Google Scholar 

  • Lewis, Antony (2004). “CMB anisotropies from primordial inhomogeneous magnetic fields”. Physical Review D 70, id. 043011.

    Google Scholar 

  • Matsuda, Takuya, Sato, H. and Takeda, Hiroshi (1971). “Pre-Galactic magnetic fields and cosmic rays in the expanding universe”. Publications of the Astronomical Society of Japan 23, 1.

    Google Scholar 

  • Melvin, M. (1964). Physical Letters 8, 65. “B polarization of the CMB from Faraday rotation”. Physical Review D 70, 063003.

    Google Scholar 

  • Naselsky, Pavel D., Chiang, Lung-Yih, Olesen, Poul and Verkhodanov, Oleg V. (2004). “Primordial magnetic field and non-Gaussianity of the one-year Wilkinson microwave anisotropy probe data”. Astrophysical Journal 615, 45–54.

    Article  Google Scholar 

  • Ohno, Hiroshi, Takada, Masahiro, Dolag, Klaus, Bartelmann, Matthias and Sugiyama, Naoshi (2003). “Probing intracluster magnetic fields with cosmic microwave background polarization”. Astrophysical Journal 584, 599–607.

    Article  Google Scholar 

  • Olesen, Poul (1997). “Inverse cascades and primordial magnetic fields”. Physics Letters B 398, 321–325.

    Article  MathSciNet  Google Scholar 

  • Parker, Eugene N. (1979). Cosmical Magnetic Fields: Their Origin and Their Activity. Clarendon Press, Oxford.

    Google Scholar 

  • Peebles, Phillip (1980). The Large Scale Structure of the Universe. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • ——. (1993). Principles of Physical Cosmology. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Quashnock, Jean M., Loeb, Abraham and Spergel, David N. (1989). “Magnetic field generation during the cosmological QCD phase transition”. Astrophysical Journal Letters 344, L49–L51.

    Article  Google Scholar 

  • Ratra, Bharat (1992). “Cosmological seed magnetic field from inflation”. Astrophysical Journal Letters 391, L1–L4.

    Article  Google Scholar 

  • Rees, Martin (1987). “The origin and cosmogonic implications of seed magnetic fields”. Royal Astronomical Society, Quarterly Journal 28, 197–206.

    Google Scholar 

  • Sigl, Gunter, Olinto, Angela V. and Jedamzik, Karsten (1996). “Primordial magnetic fields from cosmological first order phase transitions”. Physical Review D 55, 4852–4590.

    Google Scholar 

  • Turner, Michael S. and Widrow, Lawrence M. (1988). “Inflation-produced, largescale magnetic fields”. Physical Review D 37, 2743–2754.

    Article  Google Scholar 

  • Vachaspati, Tanmay (1991). “Magnetic fields from cosmological phase transitions”. Physics Letters B 265, 258–261.

    Article  Google Scholar 

  • Vall’ee, Jacques P. (2004). “Cosmic magnetic fields—as observed in the Universe, in galactic dynamos, and in the Milky Way”. New Astronomy Reviews 48, 763–841.

    Google Scholar 

  • Veneziano, Gabriele (1991). “Scale factor duality for classical and quantum strings”. Physics Letters B 265, 287–294.

    Article  MathSciNet  Google Scholar 

  • Wasserman, Ira (1978). “On the origins of galaxies, galactic angular momenta, and galactic magnetic fields”. Astrophysical Journal 224, 337–343.

    Article  Google Scholar 

  • Weinberg, Steven (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.Wiley-VCH, New York.

    Google Scholar 

  • Wielebinski, Richard and Shakeshaft, John R. (1964). “A survey of the linearly polarized component of galactic radio emission at 408 Mc/s”. Monthly Notices of the Royal Astronomical Society 128, 19.

    Google Scholar 

  • Wielebinski, Richard, Shakeshaft, John R. and Pauliny-Toth, Ivan I. K. (1962). “A search for a linearly polarized component of the galactic radio emission at 4087 Mc/s”. The Observatory 82, 158–164.

    Google Scholar 

  • Wolfe, Arthur M., Lanzetta, Kenneth M. and Oren, Aharon L. (1992). “Magnetic fields in damped Ly-alpha systems”. Astrophysical Journal 388, 17–22.

    Article  Google Scholar 

  • Zel’dovich, Yakov B., Novikov, Igor D. (1970). “A hypothesis for the initial spectrum of perturbations in the metric of the Friedmann model universe”. Soviet Astronomy 13, 754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Center for Einstein Studies

About this chapter

Cite this chapter

Battaner, E., Florido, E. (2012). Primordial Magnetic Fields and Cosmic Microwave Background. In: Lehner, C., Renn, J., Schemmel, M. (eds) Einstein and the Changing Worldviews of Physics. Einstein Studies, vol 12. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4940-1_14

Download citation

Publish with us

Policies and ethics