Primordial Magnetic Fields and Cosmic Microwave Background

  • Eduardo Battaner
  • Estrella Florido
Part of the Einstein Studies book series (EINSTEIN, volume 12)


Magnetic fields could play an important role in determining the parameters of the CMB (Cosmic Microwave Background Radiation). If there were significant primordial fields our interpretation of the spectrum of anisotropies of temperature and polarization which we use to estimate the parameter defining a cosmological model would require modification. For such an influence to be detected primordial commoving magnetic field strengths in the range 10–9–10–8 Gauss are needed, values compatible with at least some of the astrophysical restrictions.Magnetic fields contribute to the energy-momentum tensor and are therefore a source of curvature. The LSS (Last Scattering Surface) could be crossed by radiation energy density filaments, inheritors of primordial magnetic flux tubes. The possibilities of measuring magnetic field within the space mission Planck are examined here.


Dark Matter Cosmic Microwave Background Physical Review Faraday Rotation Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, Jenni, Danielsson, Ulf H., Grasso, Dario and Rubinstein, H’ector (1996). “Distortion of the acoustic peaks in the CMBR due to a primordial magnetic field”. Physics Letters B 338, 253–258.CrossRefGoogle Scholar
  2. Banerjee, Robi and Jedamzik, Karsten (2004). “The evolution of cosmic magnetic fields: fromthe very early Universe, to recombination, to the present”. Physical Review D 70, id. 123003.Google Scholar
  3. Battaner, Eduardo (1998). “The fractal octahedron network of the large scale structure”. Astronomy and Astrophysics 334, 770–771.Google Scholar
  4. Battaner, Eduardo and Florido, Estrella (2000). “The rotation curve of spiral galaxies and its cosmological implications”. Fundamentals of Cosmic Physics 21, 1–154.Google Scholar
  5. ——. (1998). “Magnetic fields and large scale structure in a hot Universe. IV. The egg-carton Universe”. Astronomy and Astrophysics 338, 383–385.Google Scholar
  6. ——. (2009). “Magnetic Fields in the Early Universe” in Cosmic Magnetic Fields: from Planets, to Stars and Galaxies. Proc. of the International Astronomical Union, IAU Symp. 259, p. 529–538.Google Scholar
  7. Battaner, Eduardo, Florido, Estrella and Garcia-Ruiz, Juan M. (1997). “Magnetic fields and large scale structure in a hot Universe. III. The polyhedric network”. Astronomy and Astrophysics 327, 8–10.Google Scholar
  8. Battaner, Eduardo, Florido, Estrella and Jimenez-Vicente, Jorge (1997). “Magnetic fields and large scale structure in a hot universe. I. General equations”. Astronomy and Astrophysics 326, 13–22.Google Scholar
  9. Battaner, Eduardo and Lesch, Harald (2000). “On the physics of primordial magnetic fields”. Anales de F´ısica 95, 213–225.Google Scholar
  10. Battaner, Eduardo, Lesch, Harald and Florido, Estrella (1998). “Magnetic fields and rotation of spiral galaxies”. Anales de F´ısica 94, 98–102.Google Scholar
  11. Brandenburg, Axel, Enqvist, Kari and Olesen, Poul (1996). “Large-scale magnetic fields from hydromagnetic turbulence in the very early universe”. Physical Review D 54, 1291–1300.CrossRefGoogle Scholar
  12. Chandrasekhar, Subrahmanyan and Fermi, Enrico (1953). “Problems of gravitational stability in the presence of a magnetic field”. Astrophysical Journal 118, 116.CrossRefMathSciNetGoogle Scholar
  13. Clarke, Tracy E., Kronberg, Phil P. and B‥ohringer, Hans (2001). “A new radio-X-ray probe of galaxy cluster magnetic fields”. Astrophysical Journal 547, L111–L114.Google Scholar
  14. Coles, Peter (1992). “Primordial magnetic fields and the large-scale structure of the Universe”. Comments on Astrophysics 16, 45.Google Scholar
  15. Dowker, Fay, Gauntlett, Jerome P., Giddings, Steven B. and Horowitz, Gary T. (1994). “Pair creation of extremal black holes and Kaluza-Klein monopoles”. Physical Review D 50, 2662–2679.CrossRefMathSciNetGoogle Scholar
  16. Enqvist, K. and Olesen, Poul (1993). “On primordial magnetic fields of electroweak origin”. Physics Letters B 319, 178–185.CrossRefGoogle Scholar
  17. Fermi, Enrico (1949). “On the origin of the cosmic radiation”. Physical Review 75, 1169–1174.CrossRefMATHGoogle Scholar
  18. Florido, Estrella and Battaner, Eduardo (1997). “Magnetic fields and large-scale structure in a hot universe. II. Magnetic flux tubes and filamentary structure”.Google Scholar
  19. Astronomy and Astrophysics 327, 1–7.Google Scholar
  20. Gasperini, Maurizio, Giovannini, Massimo and Veneziano, Gabriele (1995). “Primordial magnetic fields from string cosmology”. Physical Review Letters 75, 3796–3799.CrossRefGoogle Scholar
  21. Gheerardyn, Jos and Janssen, Bert (2003). “Probes in fluxbranes and supersymmetry breaking through Hodge-duality”. Physics Letters B 577, 263–272.CrossRefMathSciNetGoogle Scholar
  22. Gibbons, Gary W. and Maeda, Kei-Ichi (1988). “Black holes and membranes in higher-dimensional theories with dilation fields”. Nuclear Physics B 298, 741–775.CrossRefMathSciNetGoogle Scholar
  23. Gibbons, Gary W. and Wiltshire, David L. (1987). “Spacetime as a membrane in higher dimensions”. Nuclear Physics B 287, 717–742.CrossRefMathSciNetGoogle Scholar
  24. Giovannini, Massimo (2001). “Thick branes and Gauss-Bonnet self-interactions”. Physical Review D 64, 124004.CrossRefMathSciNetGoogle Scholar
  25. ——. (2003). “Assigning quantum-mechanical initial conditions to cosmological perturbations”. Classical and Quantum Gravity 20, 5455–5473.CrossRefMATHMathSciNetGoogle Scholar
  26. ——. (2006). “Magnetized CMB anisotropies”. Classical and Quantum Gravity 23, R1–R44.CrossRefMATHMathSciNetGoogle Scholar
  27. Grasso, Dario and Rubinstein, Hector R. (1996). “Revisiting nucleosynthesis constraints on primordial magnetic fields”. Physics Letters B 379, 73–79.CrossRefGoogle Scholar
  28. Harari, Diego D and Hayward, Justin D. and Zaldarriaga, Matias (1997). “Depolarization of the cosmic microwave background by a primordial magnetic field and its effect upon temperature anisotropy”. Physical Review D 55, 1841–1850.CrossRefGoogle Scholar
  29. Harrison, Edward H. (1973). “Magnetic fields in the early Universe”. Monthly Notices of Royal Astronomical Society 165, 185.Google Scholar
  30. Hogan, Craig J. (1983). “Magnetohydrodynamic effects of a first-order cosmological phase transition”. Physical Review Letters 51, 1488–1491.CrossRefGoogle Scholar
  31. Jedamzik, Karsten, Katalini’c, Visnja and Olinto, Angela V. (1998). “Damping of cosmic magnetic fields”. Physical Review D 57, 3264–3284.CrossRefGoogle Scholar
  32. ——. (2000). “Limit on primordial small-scale magnetic fields from cosmic microwave background”. Physical Review Letters 85, 700–703.CrossRefGoogle Scholar
  33. Kosowsky, Arthur and Loeb, Abraham (1996). “Faraday rotation of microwave background polarization by a primordial magnetic field”. Astrophysical Journal 461, 1.CrossRefGoogle Scholar
  34. Kosowsky, Arthur, Kahniashvili, Tina, Laurelashvili, George and Ratra, Bharat (2005). “Faraday rotation of the cosmic microwave background polarization by a stochastic magnetic field”. Physical Review D 71, 043006.CrossRefGoogle Scholar
  35. Kronberg, Philipp P. (1994). “Extragalactic magnetic fields”. Reports on Progress in Physics 57, 325–382.CrossRefGoogle Scholar
  36. ——. (2009). “Magnetic Field Transport from AGN Cores to Jets, Lobes, and the IGM” in Cosmic Magnetic Fields: from Planets, to Stars and Galaxies. Proc. of the International Astronomical Union, IAU Symp. 259, p. 499–508.Google Scholar
  37. Kronberg, Philipp P. and Perry, Jason J. (1982). “Absorption lines, Faraday rotation, and magnetic field estimates for QSO absorption–line clouds”. Astrophysical Journal 263, 518–532.CrossRefGoogle Scholar
  38. Kulsrud, Russell M. and Anderson, Stephen W. (1992). “The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic fields”. Astrophysical Journal 396, 606–630.CrossRefGoogle Scholar
  39. Lesch, Harald and Birk, Guido T. (1998). “Can large-scale magnetic fields survive during the pre-recombination era of the universe?” Physics of Plasmas 5, 2773–2776.CrossRefGoogle Scholar
  40. Lesch, Harald and Chiba, Masashi (1997). “On the origin and evolution of Galactic magnetic fields”. Fundamentals of Cosmic Physics 18, 273–368.Google Scholar
  41. Lewis, Antony (2004). “CMB anisotropies from primordial inhomogeneous magnetic fields”. Physical Review D 70, id. 043011.Google Scholar
  42. Matsuda, Takuya, Sato, H. and Takeda, Hiroshi (1971). “Pre-Galactic magnetic fields and cosmic rays in the expanding universe”. Publications of the Astronomical Society of Japan 23, 1.Google Scholar
  43. Melvin, M. (1964). Physical Letters 8, 65. “B polarization of the CMB from Faraday rotation”. Physical Review D 70, 063003.Google Scholar
  44. Naselsky, Pavel D., Chiang, Lung-Yih, Olesen, Poul and Verkhodanov, Oleg V. (2004). “Primordial magnetic field and non-Gaussianity of the one-year Wilkinson microwave anisotropy probe data”. Astrophysical Journal 615, 45–54.CrossRefGoogle Scholar
  45. Ohno, Hiroshi, Takada, Masahiro, Dolag, Klaus, Bartelmann, Matthias and Sugiyama, Naoshi (2003). “Probing intracluster magnetic fields with cosmic microwave background polarization”. Astrophysical Journal 584, 599–607.CrossRefGoogle Scholar
  46. Olesen, Poul (1997). “Inverse cascades and primordial magnetic fields”. Physics Letters B 398, 321–325.CrossRefMathSciNetGoogle Scholar
  47. Parker, Eugene N. (1979). Cosmical Magnetic Fields: Their Origin and Their Activity. Clarendon Press, Oxford.Google Scholar
  48. Peebles, Phillip (1980). The Large Scale Structure of the Universe. Princeton University Press, Princeton, New Jersey.Google Scholar
  49. ——. (1993). Principles of Physical Cosmology. Princeton University Press, Princeton, New Jersey.Google Scholar
  50. Quashnock, Jean M., Loeb, Abraham and Spergel, David N. (1989). “Magnetic field generation during the cosmological QCD phase transition”. Astrophysical Journal Letters 344, L49–L51.CrossRefGoogle Scholar
  51. Ratra, Bharat (1992). “Cosmological seed magnetic field from inflation”. Astrophysical Journal Letters 391, L1–L4.CrossRefGoogle Scholar
  52. Rees, Martin (1987). “The origin and cosmogonic implications of seed magnetic fields”. Royal Astronomical Society, Quarterly Journal 28, 197–206.Google Scholar
  53. Sigl, Gunter, Olinto, Angela V. and Jedamzik, Karsten (1996). “Primordial magnetic fields from cosmological first order phase transitions”. Physical Review D 55, 4852–4590.Google Scholar
  54. Turner, Michael S. and Widrow, Lawrence M. (1988). “Inflation-produced, largescale magnetic fields”. Physical Review D 37, 2743–2754.CrossRefGoogle Scholar
  55. Vachaspati, Tanmay (1991). “Magnetic fields from cosmological phase transitions”. Physics Letters B 265, 258–261.CrossRefGoogle Scholar
  56. Vall’ee, Jacques P. (2004). “Cosmic magnetic fields—as observed in the Universe, in galactic dynamos, and in the Milky Way”. New Astronomy Reviews 48, 763–841.Google Scholar
  57. Veneziano, Gabriele (1991). “Scale factor duality for classical and quantum strings”. Physics Letters B 265, 287–294.CrossRefMathSciNetGoogle Scholar
  58. Wasserman, Ira (1978). “On the origins of galaxies, galactic angular momenta, and galactic magnetic fields”. Astrophysical Journal 224, 337–343.CrossRefGoogle Scholar
  59. Weinberg, Steven (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.Wiley-VCH, New York.Google Scholar
  60. Wielebinski, Richard and Shakeshaft, John R. (1964). “A survey of the linearly polarized component of galactic radio emission at 408 Mc/s”. Monthly Notices of the Royal Astronomical Society 128, 19.Google Scholar
  61. Wielebinski, Richard, Shakeshaft, John R. and Pauliny-Toth, Ivan I. K. (1962). “A search for a linearly polarized component of the galactic radio emission at 4087 Mc/s”. The Observatory 82, 158–164.Google Scholar
  62. Wolfe, Arthur M., Lanzetta, Kenneth M. and Oren, Aharon L. (1992). “Magnetic fields in damped Ly-alpha systems”. Astrophysical Journal 388, 17–22.CrossRefGoogle Scholar
  63. Zel’dovich, Yakov B., Novikov, Igor D. (1970). “A hypothesis for the initial spectrum of perturbations in the metric of the Friedmann model universe”. Soviet Astronomy 13, 754.Google Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • Eduardo Battaner
    • 1
  • Estrella Florido
    • 1
  1. 1.Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations