Observational Tests of General Relativity: An Historical Look at Measurements Prior to the Advent of Modern Space-Borne Instruments

  • J. E. Beckman
Part of the Einstein Studies book series (EINSTEIN, volume 12)


This chapter gives a brief summary of the main current lines of observational (and in a few cases experimental) research designed to test the predictions of general relativity (GR). The basic pieces of work described include laboratory tests of the principle of equivalence and also astronomical tests within the solar system, light deflection and light delays both within the solar system and on larger scales within the Galaxy, and binary pulsars as the most powerful current probes of GR. Contrasts between the numerical limits on the accuracy of the methods, the predictions of GR, and predictions of alternative theories are brought out, with the basic conclusion that so far GR gives an entirely adequate framework for the results of each different test applied. Finally, a very short survey of sensitive space-based tests is added, to give a perspective on current experimental trends.


Solar System Neutron Star Very Long Baseline Interferometry Wilkinson Microwave Anisotropy Probe Binary Pulsar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertotti B., Iess L. and Tortora P., 2003, “A test of general relativity using radio links with the Cassini spacecraft”, Nature 425, 374.CrossRefGoogle Scholar
  2. Braginsky V. B. and Panov V. I., 1972, “Verification of the equivalence of inertial and gravitational mass”, Sov. Phys. JETP 34, 463.Google Scholar
  3. Brans C. H. and Dicke R. H., 1961, “Mach’s principle and a relativistic theory of gravitation”, Phys. Rev. 124, 925.CrossRefMATHMathSciNetGoogle Scholar
  4. Burgay M., D’Amico N., Possenti A., Manchester R. N., Lyne A. G., Joshi B. C., McLaughlin M. A., Kreamer M., Sarkissian J. M., Camilo F., Kalogera V., Kim C. and Lorimer D. R., 2003, “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature 426, 531.CrossRefGoogle Scholar
  5. Burgay M., D’Amico N., Possenti A., Manchester R. N., Lyne A. G., Kramer M., McLaughlin M. A., Lorimer D. R., Camilo F., Stairs I. H., Freire P. C. C. and Joshi B. C., 2006, “The double pulsar system J0737-3039”,Mem. Soc. Astron. Ital. Suppl. 9, 345.Google Scholar
  6. Damour T. and Deruelle B., 1986, “General relativistic celestial mechanics of binary systems, II. The post-Newtonian timing formula”, Ann. Inst. Henri Poincare (Physique Te’orique) 44, 263.Google Scholar
  7. Eddington A. S., 1919, “The total eclipse of 1919 May 29 and the influence of gravitation on light”, Observatory 42, 119.Google Scholar
  8. E‥otv‥os R. von, 1890, Mathematische und Naturwissenschaftliche Berichte aus Ungarn 8, 65.Google Scholar
  9. Freedman Wendy L., Madore Barry F., Gibson Brad K., Ferrarese Laura, Kelson Daniel D., Sakai Shoko, Mould Jeremy R., Kennicutt Robert C., Jr., Ford Holland C., Graham John A., Huchra John P., Hughes Shaun M. G., Illingworth Garth D., Macri Lucas M. and Stetson Peter B., 2001, “Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant”, ApJ 553, 47.Google Scholar
  10. Hulse R. A., 1994, “Nobel Lecture, The discovery of the binary pulsar”, Rev. Mod. Phys. 66, 699.CrossRefGoogle Scholar
  11. Hulse R. A. and Taylor J. H., 1975, “The discovery of a pulsar in a binary system”, ApJ 195, L51.CrossRefGoogle Scholar
  12. Kaspi V. M., Taylor J. H. and Ryba M. F., 1994, “High precision timing of millisecond pulsars III. Long-term monitoring of PSRs B1855+09 and B1937+21”, ApJ 428, 713.Google Scholar
  13. Kramer M., Staris I. H., Manchester R. N., McLaughlin M. A., Lyne A. G., Ferdman R. D., Burgay M., Lorimer D. R., Possenti A., D’Amico N., Sarkissian J. M., Hobbs G. B., Reynolds J. E., Freire P. C. C. and Camilo F., 2006, “Tests of general relativity from timing the double pulsar”, Science 314, 97.CrossRefGoogle Scholar
  14. Laplace P. S. de, 1774, Memoirs de Math’ematique et Physique pr’esente’s a l’Acad’emie Royale de Science, y lus dans ses Assembl’ees. Lebach D. E., Corey B. E., Shapiro I. I., Ratner M. I.,Webber J. C., Rogers A. E. E., Davis J. L. and Herring, T. A., 1995, “Measurement of the solar gravitationalGoogle Scholar
  15. deflection of radio waves using very long baseline interferometry”, Phys. Rev. Lett. 75, 1439.Google Scholar
  16. Lines R. D., Lines H., Guinan E. F. and Carroll, S. M., 1989, “Time of minimum determination of the eclipsing binary V541 Cygni”, Informational Bulletin on Variable Stars of the IAU, No. 3286.Google Scholar
  17. Newton I., 1687, Principia, Book III, Proposition VI, Theory VI.Google Scholar
  18. Nordtvedt K., 1995, “The relativistic orbit observables in lunar laser ranging”, Icarus 114, 51.CrossRefGoogle Scholar
  19. Possenti A., Burgay M., D’Amico N., Lyne A. G., Kramer M., Manchester R. N., Camilo F., McLaughlin M. A., Lorimer D., Joshi B. C., Sarkissian J. M. and Freire P. C. C., 2004, “The double-pulsar PSR J0737-3039A/B”, Mem. Soc. Astron. Ital. Suppl. 5, 142.Google Scholar
  20. Potter H. H., 1923, Proc. R. Soc. A 104, 588.CrossRefGoogle Scholar
  21. Roll P. G., Krotkov R. and Dicke R. H., 1964, “The equivalence of inertial and passive gravitational mass”, Ann. Phys. (N.Y.) 26, 442.Google Scholar
  22. Shapiro I. I., Reasenberg R. D., MacNeil P. E., Goldstein R. B., Brenkle J. P., Cain D. L., Komarek T., Zygielbaum A. I., Cuddihy W. F. and Michael W. H., Jr., 1977, “The Viking relativity experiment”, JGR 82, 4329.CrossRefGoogle Scholar
  23. Shapiro S. S., Davis J. L., Lebach D. E. and Gregory J. S., 2004, “Measurement of the solar gravitational deflection of radio waves using geodetic very long baseline interferometry data, 1979–1999”,Phys. Rev. Lett. 92, 121101.CrossRefGoogle Scholar
  24. Spergel D. N., Verde L., Peiris H. V., Komatsu E., Nolta M. R., Bennett C. L., Halpern M., Hinshaw G., Jarosik N., Kogut A., Limon M., Meyer S. S., Page L., Tucker G. S.,Weiland J. L.,Wollack E. andWright E. L., 2003, “FirstyearWilkinsonMicrowave Anisotropy Probe (WMAP) observations:Determination of cosmological parameters”, ApJS 148, 175.Google Scholar
  25. Stairs I. H., 2003, “Testing general relativity with pulsar timing”, Living Reviews in Relativity 6, Irr-2003-5.Google Scholar
  26. Stairs I. H., Thorsett S. E., Taylor J. H. and Woclzan A., 2002, ApJ 581, 501.CrossRefGoogle Scholar
  27. Su Y., Heckel B. R., Adelberger E. G., Gundlach J. H., Harris M., Smith G. L. and Swoanson H. E., 1994, “New tests of the universality of free fall”, Phys. Rev. D 50, 3614.CrossRefGoogle Scholar
  28. Taylor J. H., 1994, “Nobel Lecture, Binary pulsars and relativistic gravity”, Rev. Mod. Phys. 66, 711.CrossRefGoogle Scholar
  29. Taylor J. H. and Weisberg J. M., 1982, “A new test of general relativity—Gravitational radiation and the binary pulsar PSR 1913 + 16”, ApJ 253, 908.CrossRefGoogle Scholar
  30. Will C., 2006, “The confrontation between general relativity and experiment”, Living Reviews in Relativity 9, Irr-2006-3.Google Scholar
  31. Williams J. G., Turyshev S. G. and Boggs D. H., 2004, “Progress in lunar laser ranging tests of relativistic gravity”, Phys. Rev. Lett. 93, 261101-1-4.Google Scholar

Copyright information

© The Center for Einstein Studies 2012

Authors and Affiliations

  • J. E. Beckman
    • 1
  1. 1.Instituto de Astrofísica de Canarias & Consejo Superior de Investigaciones CientíficasLa LagunaSpain

Personalised recommendations