Regulation of Control Systems

  • Jean-Pierre Aubin
Part of the Systems & Control: Foundations & Applications book series (MBC)


In this chapter, we interpret viability theorems in the framework of control systems with a priori feedbacks 1 and state constraints.


Lower Semicontinuous Differential Inclusion Viable Solution Open Loop Control Contingent Cone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [29]
    AUBIN J.-P., FRANKOWSKA H. (1990) Inclusions aux dérivées partielles gouvernant des contrôles de rétroaction, Comptes-Rendus de l’Académie des Sciences, Paris, 311, 851856Google Scholar
  2. [32]
    AUBIN J.-P.,FRANKOWSKA H. (to appear) Partial differential inclusions governing feedback controls,IIASA WP-90–028Google Scholar
  3. [31]
    AUBIN J.-P.,FRANKOWSKA H. (to appear) Hyperbolic systems of partial differential inclusions,IIASA WP-90–0Google Scholar
  4. [30]
    AUBIN J.-P., FRANKOWSKA H. (1990) Systèmes hyperboliques d’inclusions aux dérivées partielles, Comptes-Rendus de l’Académie des Sciences, Paris, 312, 271–276Google Scholar
  5. [19]
    AUBIN J.-P., DA PRATO G. (to appear) Contingent solutions to the center manifold equation,Annales de l’Institut Heanri-Poincaré, Analyse Non LinéaireGoogle Scholar
  6. [18]
    AUBIN J.-P., DA PRATO G. (1990) Solutions contingentes de l’équation de la variété centrale, Comptes-Rendus de l’Académie des Sciences, Paris, 311, 295–300Google Scholar
  7. [135]
    BYRNES C.I., ISIDORI A. (1990) Feedback design from the zero dynamics point of view, in COMPUTATION AND CONTROL, Bowers K., Lund J. Eds., Birkhäuser, 23–52Google Scholar
  8. [136]
    BYRNES C.I., ISIDORI A. (1990) Output regulation of nonlinear systems, IEEE Trans. Autom. Control, 35, 131–140Google Scholar
  9. [137]
    BYRNES C.I., ISIDORI A. (1990) Régulation asymptotique des systèmes non linéaires, Comptes-Rendus de l’Académie des Sciences, Paris, 309, 527–530Google Scholar
  10. [139]
    BYRNES C.I., ISIDORI A. (to appear) New methods for shaping the response of a nonlinear system,in NONLINEAR SYNTHESIS, Eds. Byrnes, Kurzhanski, BirkhäuserGoogle Scholar
  11. [250]
    FRANKOWSKA H. (1989) Non smooth solutions to an Hamilton-Jacobi equation, Proceedings of the International Conference Bellman Continuum, Antibes, France, June 1314, 1988, Lecture Notes in Control and Information Sciences, Springer VerlagGoogle Scholar
  12. [251]
    FRANKOWSKA H. (1989) Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations,Applied Mathematics and Optimization, 19, 291–311Google Scholar
  13. [256]
    FRANKOWSKA H. (1991) Lower semicontinuous solutions to Hamilton-Jacobi equations,Cahiers de Mathématiques de la DécisionGoogle Scholar
  14. [193]
    CRANDALL M.G., LIONS P.L. (1983) Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1–42Google Scholar
  15. [359]
  16. [28]
    AUBIN J.-P., FRANKOWSKA H. (1990) SET-VALUED ANALYSIS, Birkhäuser, Systems and Control: Foundations and Applications Google Scholar
  17. [192]
    CRANDALL M.G., EVANS L.C., LIONS P.L. (1984) Some properties of viscosity solutions of Hamilton-Jacobi equation,Trans. Amer. Math. Soc., 282(2), 487–502Google Scholar

Copyright information

© Springer Science+Business Media New York 2009

Authors and Affiliations

  • Jean-Pierre Aubin
    • 1
  1. 1.EDOMADE (Ecole Doctorale de Mathématique de la Décision)Université de Paris-DauphineParis cedex 16France

Personalised recommendations