Advertisement

Differential Games

  • Jean-Pierre Aubin
Part of the Systems & Control: Foundations & Applications book series (MBC)

Abstract

We consider two players, Xavier and Yvette, and a differential game whose dynamics are described by
where u, v, the controls, are regarded as strategies used by the players to govern the evolution of the states x, y of the game.

Keywords

Lower Semicontinuous Differential Game Differential Inclusion Continuous Selection Initial Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [57]
    AUBIN J.-P. (1990) Differential games: a viability approach,SIAM J. on Control and Optimization, 28, 1294–1320Google Scholar
  2. [51]
    AUBIN J.-P. (1989) Contingent Isaacs’ equations of a differential game, in DIFFERENTIAL GAMES AND APPLICATIONS, Eds. T. Bagar, P. Bernhard, Lecture Notes in Control and Information Sciences, Springer-Verlag, 51–61Google Scholar
  3. [55]
    AUBIN J.-P. (1989) Victory and defeat in di f ferential games, in MODELING AND CONTROL OF SYSTEMS, Proceedings of the Bellman Continuum, June 1988, Ed. A. Blaquière, Lecture Notes in Control and Information Sciences, Springer-VerlagGoogle Scholar
  4. [431]
    QUINCAMPOIX M. (1990) Playable differentiable games, J. Math. Anal. Appl.Google Scholar
  5. [433]
    QUINCAMPOIX M. (to appear) Domaines de victoire et de défaite d’un jeu différentiel à une cible et deux joueurs,Cahiers de Mathématiques de la décisionGoogle Scholar
  6. [91]
    BERNHARD P.,LARROUTUROU B. (to appear) Etude de la barrière pour un problème de fuite optimale dans le plan Google Scholar
  7. [430]
    QUINCAMPOIX M. (1990) Frontières de domaines d’invariance et de viabilité pour des inclusions différentielles avec contraintes,Comptes-Rendus de l’Académie des Sciences, Paris, 311, 411–416Google Scholar
  8. [96]
    BERNHARD P. (1988) Dif f erential games: closed loop,In SYSTEMS,CONTROL ENCYCLOPEDIA, THEORY, TECHNOLOGY APPLICATIONS, M, G. Singh Ed, Pergamon PressGoogle Scholar
  9. [97]
    BERNHARD P. (1988) Differential games: introduction,In SYSTEMS,CONTROL ENCYCLOPEDIA, THEORY, TECHNOLOGY APPLICATIONS, M, G. Singh Ed, Pergamon PressGoogle Scholar
  10. [98]
    BERNHARD P. (1988) Differential games: Isaacs equations,In SYSTEMS, CONTROL ENCYCLOPEDIA, THEORY, TECHNOLOGY APPLICATIONS, M, G. Singh Ed, Pergamon PressGoogle Scholar
  11. [99]
    BERNHARD P. (1988) Differential games: linear quadratic, In SYSTEMS,CONTROL ENCYCLOPEDIA, THEORY, TECHNOLOGY APPLICATIONS, M, G. Singh Ed, Pergamon PressGoogle Scholar
  12. [100]
    BERNHARD P. (1988) Differential games: open loop,In SYSTEMS,CONTROL ENCYCLOPEDIA, THEORY, TECHNOLOGY APPLICATIONS, M, G. Singh Ed, Pergamon PressGoogle Scholar
  13. [92]
    BERNHARD P. (1976) COMMANDE OPTIMALE, DÉCENTRALISATION ET JEUX DYNAMIQUES, DunodMATHGoogle Scholar
  14. [293]
    KRASOVSKI N. N., SUBBOTIN A. I. (1974) POSITIONAL DIFFERENTIAL GAMES, Nauka, MoscowGoogle Scholar
  15. [294]
    KRASOVSKI N. N., SUBBOTIN A. I. (1988) GAME-THEORETICAL CONTROL PROBLEMS, Springer-VerlagGoogle Scholar
  16. [322]
    KURZHANSKI A.B., VALYI I. (1988) Set-valued solutions to control problems and their approximations,in ANALYSIS AND OPTIMIZATION OF SYSTEMS, Bensoussan-Lions J.-L, Eds, Vol. 111, 775–785 Springer-VerlagGoogle Scholar
  17. [323]
    KURZHANSKI A.B.,VALYI I. (to appear) ELLIPSOIDAL-VALUED DYNAMICS FOR ESTIMATION AND CONTROLGoogle Scholar
  18. [232]
    FLASHNER H., SKOWRINSKI J. M. (to appear) Nonlinear adaptive control of robotic manipulators Google Scholar
  19. [479]
    SKOWRINSKI J. M. (to appear) Winning controllers and regions in competitive nonlinear dynamic game with two qualitative objectives and uncertain information Google Scholar

Copyright information

© Springer Science+Business Media New York 2009

Authors and Affiliations

  • Jean-Pierre Aubin
    • 1
  1. 1.EDOMADE (Ecole Doctorale de Mathématique de la Décision)Université de Paris-DauphineParis cedex 16France

Personalised recommendations