Skip to main content

On the Development and Application of Net-Sign Graph Theory

  • Chapter
  • First Online:
Towards an Information Theory of Complex Networks
  • 1603 Accesses

Abstract

This report briefly describes the development and applications of net-sign graph theory. The current work enunciates the graph (molecule) signature of non-alternant non-benzenoid hydrocarbons with odd member of rings (non-bipartite molecular graphs) based on chemical signed graph theory. Experimental evidences and Hückel spectrum reveal that structure possessing nonbonding molecular orbital (NBMOs) is very unstable and highly reactive under the drastic conditions of low temperature. Chemical signed graph theoretical approach is applied successfully to classify the non-bipartite molecular graphs with a view to Randic’s conjugated circuit models based on their spectral characteristic. The obtained results based on net-sign approach are compared with those obtained using Hückel calculations.

MSC2000 Primary 05C22, 05C40; Secondary 65S05, 94C15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prelog, V.: Nobel lecture (December 1975). reprinted in Science 193, 17 (1976)

    Google Scholar 

  2. Cyvin, S.J.: The number of Kekule structures for primitive coronoids(cycloarenes). Chem. Phys. Lett. 147, 384–388 (1988)

    Article  Google Scholar 

  3. Aboav, D., Gutman, I.: Estimation of the number of benze-noid hydrocarbons. Chem. Phys. Lett. 148, 90–92 (1988)

    Article  Google Scholar 

  4. Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)

    Google Scholar 

  5. Trinajstii, N.: Chemical Graph Theory, Chap. 4, Vol. 2. CRC Press, Boca Raton, FL (1983)

    Google Scholar 

  6. Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure-Activity Analysis. Wiley, New York (1986)

    Google Scholar 

  7. Read, R.C., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 4. Academic Press, New York (1976)

    Google Scholar 

  8. Balaban, A.T., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 5. Academic Press, New York (1976)

    Google Scholar 

  9. Gielen, M., BaIaban, A.T. (eds.): Chemical Applications of Graph Theory, Chap. 9. Academic Press, New York (1976)

    Google Scholar 

  10. King, R.B., Rouvray, D.H.: Chemical applications of topology and group theory. Theoret. Chim. Acta 69, 1–10 (1986)

    Article  Google Scholar 

  11. King, R.B.: Chemical bonding topology of bare post-transition-metal clusters: analogies between condensed-phase and gas-phase species. J. Phys. Chem. 92, 4452–4456 (1988)

    Article  Google Scholar 

  12. El-Basil, S.: Combinatorial Clar sextet theory: on valence-bond method of Herndon and Hosoya. Theor. Chim. Acta 70, 53–65 (1986)

    Article  Google Scholar 

  13. Cyvin, S.J., Cyvin, B.N., Brunvoll, J.: Half essentially disconnected coronoid hydrocarbons. Chem. Phys. Lett. 140, 124–129 (1987)

    Article  MATH  Google Scholar 

  14. Arteca, G.A., Mezey, P.G.: A topological characterization for simple molecular surfaces. J. Mol. Struct. (Theochem) 166, 11–16 (1988)

    Article  Google Scholar 

  15. Fernandez, A.: Pattern of separatrices and intrinsic reaction coordinates for degenerate thermal rearrangements. Theor. Chim. Acta 67, 229–233 (1985)

    Article  Google Scholar 

  16. Sakamoto, A., Kawakami, H., Yoshikawa, K.: A graph theoretical approach to complex reaction networks. Chem. Phys. Lett. 146, 444–448 (1988)

    Article  MathSciNet  Google Scholar 

  17. Randic, M.: Symmetry properties of chemical graphs. VIII. On complementarity of isomerization modes. Theor. Chim. Acta 67, 137–155 (1985)

    Article  Google Scholar 

  18. King, R.B., Reich1, L.E., Schieve, W.C. (eds.): Instabilities, Bifurcations, and Fluctuations in Chemical Systems, p. 47. University of Texas Press, Austin (1982)

    Google Scholar 

  19. Lee, S.L., Lucchese, R.R., Chu, S.Y.: Topological analysis of eigenvectors of the adjacency matrices in graph theory: The concept of internal connectivity. Chem. Phys. Lett. 137, 279 (1987)

    Article  MathSciNet  Google Scholar 

  20. Gunthard, H.H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39, 1645–1653 (1956)

    Article  Google Scholar 

  21. Trinajstic, N., Segal, G.A. (eds.): Semiempirical Methods of Electronic Structure Calculation. Part A. Techniques, Vol. 7, p. 1. Plenum Press, New York (1977)

    Google Scholar 

  22. Ruedenburg, K.: Quantum mechanics of mobile electrons in conjugated bond systems. I. General analysis in the tight-binding formulation. J. Chem. Phys. 34, 1861–1877 (1961)

    Google Scholar 

  23. Schmidtke, H.H.: LCAO description of symmetric molecules by unified theory of finite graphs. J. Chem. Phys. 45, 3920–3928 (1966)

    Article  Google Scholar 

  24. Lee, S.L., Li, F.Y.: Net sign approach in graph spectral theory. J. Mol. Struct. (Theochem) 207, 301–317 (1991)

    Article  Google Scholar 

  25. Lee, S.L., Li, C.: Chemical signed graph theory. Int. J. Quant. Chem. 49, 639–648 (1994)

    Article  Google Scholar 

  26. Lee, S.L., Gutman, I.: Topological analysis of the eigenvectors of the adjacency matrices in graph theory: Degenerate case. Chem. Phys. Lett. 157, 229–232 (1989)

    Article  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory, Course of Theoretical Physics, 3rd edn., Vol. 3, p. 60. Pergamon Press, New York (1977)

    Google Scholar 

  28. Levine, I.N.: Quantum Chemistry. Allyn and Bacon, Boston, MA (1974)

    Google Scholar 

  29. Wilson, E.B.: Symmetry, nodal surfaces, and energy ordering of molecular orbitals. J. Chem. Phys. 63, 4870–4879 (1975)

    Article  MathSciNet  Google Scholar 

  30. Lee, S.L., Li, F.Y., Lin, F.: Topological analysis of eigenvalues of particle in one- and two-dimensional simple quantal systems: net sign approach. Int. J. Quant. Chem. 39, 59–70 (1991)

    Article  Google Scholar 

  31. Heilbronner, E., Straub, P.A.: Slide rule computation of Hueckel molecular orbitals. Tetrahedron 23, 845–862 (1967)

    Article  Google Scholar 

  32. Herndon, W.C., Silber, E.: Simplified molecular orbitals for organic molecules. J. Chem. Educ. 48, 502–508 (1971)

    Article  Google Scholar 

  33. Lee, S.L., Yeh, Y.N.: Topological analysis of some special of graphs: Hypercubes. Chem. Phys. Lett. 171, 385–388 (1990)

    Article  Google Scholar 

  34. Lee, S.L., Luo, Y.L., Sagan, E.B.: Eigenvector and eigenvalues of some special graphs. IV. Multilevel circulants, Yeh. Int. J. Quant. Chem. 41, 105–116 (1992)

    Article  Google Scholar 

  35. Lee, S.L., Yeh, Y.N.: On Eigenvalues and Eigenvactors of graphs. J. Math. Chem. 12, 121–135 (1993)

    Article  MathSciNet  Google Scholar 

  36. Gutman, I., Lee, S.L., Yeh, Y.N.: Net signs of molecular graphs: dependence on molecular structure. Int. J. Quant. Chem. 49, 87–95 (1994)

    Article  Google Scholar 

  37. Dehmer, M.: Information theoretic concepts for the analysis of complex networks. Appl. Artif. Intell. 22, 684–706 (2008)

    Article  Google Scholar 

  38. Gutman, I.: Topological analysis of Eigenvalues of the adjacency matrices in graph theory: A difficulty with the concept of internal connectivity. Chem. Phys. Lett. 148, 93–94 (1988)

    Article  Google Scholar 

  39. Coulson, C.A., Streitwieser, A.: Dictionary of π-electron calculations. Freeman, San Francisco, CA (1965)

    Google Scholar 

  40. Lee, S.L.: Topological analysis of five-vertex clusters of group IVA elements. Theo. Chim. Acta. 81, 185–199 (1992)

    Article  Google Scholar 

  41. Gutman, I., Lee, S.L., Yeh, Y.N.: Net signs and Eigenvalues of molecular graphs: some analogies. Chem. Phys. Lett. 191, 87–91 (1992)

    Article  Google Scholar 

  42. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  43. Wiener, H.: Influence of interatomic forces on paraffin properties. J. Chem. Phys. 15, 766 (1947)

    Article  Google Scholar 

  44. Morowitz, H.: Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1953)

    Article  Google Scholar 

  45. Quastler, H.: Information Theory in Biology. University of Illinois Press, Urbana (1953)

    Google Scholar 

  46. Dancoff, S.M., Quastler, H.: Information content and error rate of living things. In: Quastler, H. (eds.) Essays on the Use of Information Theory in Biology, pp. 263–274. University of Illinois Press, Urbana (1953)

    Google Scholar 

  47. Linshitz, H.: The information content of a battery cell. In: Quastler, H. (eds.) Essays on the Use of Information Theory in Biology. University of Illinois Press, Urbana (1953)

    Google Scholar 

  48. Mowshowitz, A.: Entropy and the complexity of graphs i: An index of the relative complexity of a graph. Bull. Math. Biophys. 30, 175–204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mowshowitz, A.: The information content of digraphs and infinite graphs. Bull. Math. Biophys. 30, 225–240 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mowshowitz, A.: Graphs with prescribed information content. Bull. Math. Biophys. 30, 387–414 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mowshowitz, A.: Entropy measures and graphical structure. Bull. Math. Biophys. 30, 533–546 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rashewsky, N.: Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235 (1955)

    Article  MathSciNet  Google Scholar 

  53. Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)

    Article  MathSciNet  Google Scholar 

  54. Randic’, M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  55. Kier, L.B., Hall, L.H., Murray, W.J., Randic’, M.: Molecular connectivity I: Relationship to nonspecific local anesthesia. J. Pharm. Sci. 64, 1971–1974 (1975)

    Article  Google Scholar 

  56. Bonchev, D., Trinajstic, N.: On topological characterization of molecular branching. Int. J. Quant. Chem. Symp. 12, 293–303 (1978)

    Google Scholar 

  57. Bonchev, D., Balaban, A.T., Mekenyan, A.: Generalization of the graph center concept, and derived topological centric indexes. J. Chem. Inf. Comput. Sci. 20, 106–113 (1980)

    Article  Google Scholar 

  58. Gutman, I., Ruscic, B., Trinajstic, N., Wilcox, C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)

    Google Scholar 

  59. Hosoya, H.: Rydberg orbitals. IV. Basic formulas for the one-electron perturbation calculation of molecular Rydberg excited states. Int. J. Quant. Chem. 6, 801–817 (1972)

    Google Scholar 

  60. Basak, S.C., Gute, B.D., Grunwald, G.D.: A comparative study of topological and geometrical parameters in estimating normal boiling point and octanol/water partition coefficient. J. Chem. Inf. Comput. Sci. 36, 1054–1060 (1996)

    Article  Google Scholar 

  61. Bonchev, D.: “Information Theoretic Indices for Characterization of Chemical Structure”. Wiley InterScience, New York (1983)

    Google Scholar 

  62. Balaban, A.T. (ed.): “From Chemical Topology to 3D Molecular Geometry”. Plenum Press, New York (1997)

    Google Scholar 

  63. Kubinyi, H., Folkers, G., Martin, Y.C. (eds.): “3D QSAR in Drug Design”, Vol. 1, 2, 3. Kluwer/ESCOM (1996–98)

    Google Scholar 

  64. Karelson, M.: “Molecular Descriptors in QSAR/QSPR”. Wiley-Interscience, New York (2000)

    Google Scholar 

  65. Todeschini, R., Consonni, V.: “Handbook of Molecular Descriptors”. Wiley-VCH, Weinheim, Germany (2000)

    Book  Google Scholar 

  66. Sahu, P.K., Lee, S.L.: Novel information theoretic topological index Ik for unsaturated hydrocarbons. Chem. Phys. Lett. 396, 465–468 (2004)

    Article  Google Scholar 

  67. Sahu, P.K., Lee, S.L.: Net-sign identity information index: a novel approach towards numerical characterization of chemical signed graph theory. Chem. Phys. Lett. 454, 133–138 (2008)

    Article  Google Scholar 

  68. Lloyd, D.: The chemistry of cyclic conjugated compounds: to be or not to be like benzene? Wiley, Chichester (1989)

    Google Scholar 

  69. Lin, C.Y., Krantz, A.: Matrix preparation of cyclobutadiene. J. Chem. Soc. Chem. Commun. 1111–1112 (1972)

    Google Scholar 

  70. Bochvar, D.A., Stankevich, I.V., Tutkevich, A.V.: izv akad nauk ussr. Seria Khim 1185 (1969)

    Google Scholar 

  71. Bochvar, D.A., Gal’pern, E.G.: izv akad nauk ussr. Seria Khim 1327 (1972)

    Google Scholar 

  72. Bochvar, D.A., Stankevich, I.V.: Zh Strukt Khim 13, 1123 (1972)

    Google Scholar 

  73. Gutman, I., Trinajstic, N.: Graph-theoretical classifications of conjugated hydrocarbons. Naturwissenschaften 60, 475–475 (1973)

    Google Scholar 

  74. Groavac, A., Gutman, I., Trinajstic, N., Zivkovic, T.: Graph theory and molecular orbitals. Application of Sachs theorem. Theor. Chim. Acta. Berlin 26, 67–78 (1972)

    Article  Google Scholar 

  75. Cvetkovic, D., Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Croat. Chem. Acta. 44, 365–374 (1972)

    Google Scholar 

  76. Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Google Scholar 

  77. Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. IV. Further application of Sachs formula. Croat. Chem. Acta. 45, 423–429 (1973)

    Google Scholar 

  78. Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. V. Loop rule. Chem. Phys. Lett. 20, 257–260 (1973)

    Article  Google Scholar 

  79. Gutman, I., Trinajstic, N.: Graph theory and molecular orbitals. Forschritte Chem Forschung (Topics in current chemistry) 42, 49–93 (1973)

    Article  Google Scholar 

  80. Gutman, I., Trinajstic, N., Zivkovic, T.: Graph theory and molecular orbitals. VI. Discussion of nonalternant hydrocarbons. Tetrahedron 29, 3449–3454 (1973)

    Google Scholar 

  81. Gutman, I.: On the number of antibonding MO’s in conjugated hydrocarbons. Chem. Phys. Lett. 26, 85–88 (1974)

    Article  Google Scholar 

  82. Trinajstic, N.: Chemical Graph Theory, vol. 1. CRC, Boca Raton, Florida (1983)

    Google Scholar 

  83. Randic, M.: Aromaticity and conjugation. J. Am. Chem. Soc. 99, 444–450 (1977)

    Article  Google Scholar 

  84. Randic, M.: A graph theoretical approach to conjugation and resonance energies of hydrocarbons. Tetrahedron 33, 1905–1920 (1977)

    Article  Google Scholar 

  85. Klein, D.J., Trinajstic, N.: Foundations of conjugated-circuits models. Pure. Appl. Chem. 61, 2107–2115 (1989)

    Article  Google Scholar 

  86. Randic, M.: Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003)

    Article  Google Scholar 

  87. Balaban, A.T., Randic, M.: Partitioning of π-electrons in rings of polycyclic conjugated hydrocarbons. 5. Nonalternant compounds. J. Chem. Inf. Comput. Sci. 44, 1701–1707 (2004)

    Article  Google Scholar 

  88. Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. In: Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 161 220–235 (1937)

    Google Scholar 

Download references

Acknowledgements

We are thankful to Milan Randic for his suggestions. This research is supported by National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Long Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sahu, P.K., Lee, SL. (2011). On the Development and Application of Net-Sign Graph Theory. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_6

Download citation

Publish with us

Policies and ethics