Skip to main content

Social Ontologies as Generalized Nearly Acyclic Directed Graphs: A Quantitative Graph Model of Social Tagging

  • Chapter
  • First Online:
Book cover Towards an Information Theory of Complex Networks

Abstract

In this paper, we introduce a quantitative graph model of social ontologies as exemplified by the category system of Wikipedia. This is done to contrast structure formation in distributed cognition with classification schemes (by example of the DDC and MeSH), formal ontologies (by example of OpenCyc and SUMO), and terminological ontologies (as exemplified by WordNet). Our basic findings are that social ontologies have a characteristic topology that clearly separates them from other types of ontologies. In this context, we introduce the notion of a Zipfian bipartivity to analyze the relationship of categories and categorized units in distributed cognition.

MSC2000 Primary 05C75; Secondary 05C82, 68T50, 90B15, 91D30, 91F20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that within the social ontologies analyzed here, i.e. Wikipedia category systems, moderation may occur.

  2. 2.

    Such links are anchored within the body of an article, but not at the end of it where categorization links are located.

  3. 3.

    The order of a graph equals the number of its vertices [32].

  4. 4.

    Note that the documentation of the Wikipedia suggests the absence of cycles and that the category system of the Wikipedia spans DAGs (cf. http://en.wikipedia.org/wiki/Wikipedia:Categorization). We show more precisely the degree by which this is only approximately true.

  5. 5.

    This approach is in the line of [13] who develops information-theoretic indices of graphs and their topology. See also [87] for a related approach in the area of quantitative biology. A second impulse comes from [22] who calculates entropies of probability distributions of vertices in complex networks. Albeit this coincidence we deal with complex nearly DAG-like graphs apart from complex networks. In any event, it is our conviction that the analysis of graph structures can gain invaluable insights from these two approaches beyond of what has been done so far in complex network theory.

  6. 6.

    Note that the graphs in Fig. 10.5 denote different scenarios only schematically.

  7. 7.

    Note that we use the terms index and measure synonymously (cf. [41]).

  8. 8.

    Of course, every weakly connected component of the [ ]-variant of the SOC has at least one source. This information is already implicity explored by means of the connected component statistics. Thus, we focus on operating on the LCC of each SOG when calculating the multiplicity index.

  9. 9.

    Note that μ = . 514 and σ = . 3621.

  10. 10.

    This also means that if we disregard the multiplicity of sources we may say that SOGs tend to be tree-like.

  11. 11.

    By D − u we denote in the usual way the subdigraph of D induced by V ∖ { u}.

  12. 12.

    Note that [85] as well as [76] and [77] aim at improving shortest path algorithms by operating on nearly acyclic graphs but not on graph classification. Therefore, the deficiency we found is irrelevant for them.

  13. 13.

    At this point one might ask why we do not use a simpler notion of cyclicity [38] by counting, for example, the number of edges to be deleted in order to make a graph acyclic? The simple reason is that index (10.10) is more informative about the DAG-like structure of a SOG as it additionally includes the impact of multiple sources.

  14. 14.

    A synergetic model [2, 39] of this process could be a starting point to build an integrative model of all characteristics of structure formation considered here. However, at present this is out of reach.

  15. 15.

    At this point, we might also take the variance or mean of the feature vector q(x) as an aggregation function to measure the balance of x. See [52, 70] for such an approach.

  16. 16.

    Note that this main category is always unique.

  17. 17.

    An obvious alternative to this approach would be to analyze the distribution of imbalance values in a SOG – this will be one reference point for future work.

  18. 18.

    Botafogo et al. [14] already utilized depth as a reference quantity of imbalance. However, they unnecessarily use a recursive function for defining it and miss demonstrating its empirical significance.

  19. 19.

    Without following this line of research here, it may be interesting to consider this level of maximum order from the point of view of conceptual levels in prototype theory [74].

  20. 20.

    See [54] who have introduced this notion in the area of modeling web genres.

  21. 21.

    Cf. www.nlm.nih.gov/mesh/.

  22. 22.

    Cf. www.ontologyportal.org/.

  23. 23.

    Cf. http://wordnet.princeton.edu/man/wninput.5WN.html.

  24. 24.

    Thus, the reader should not confuse r with a random uniform distribution of the objects over the target classes.

  25. 25.

    In Table 10.9 we present the F-score of the best performing subset of features. This subset is reported in the 6th column of Fig. 10.22. We see that, by representing the target ontologies by this feature subset, the F-score is raised. Below we discuss this result in the context of testing the OSH.

References

  1. Altmann, G.: Semantische Diversifikation. Folia Ling. 19, 177–200 (1985)

    Google Scholar 

  2. Altmann, G., Köhler, R.: “Language forces” and synergetic modelling of language phenomena. In: Glottometrika, vil. 15, pp. 62–76. Brockmeyer, Bochum (1996)

    Google Scholar 

  3. Altmann, G., Lehfeldt. W.: Allgemeine Sprachtypologie. Fink, München (1973)

    Google Scholar 

  4. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web. Wiley, Chichester (2003)

    Google Scholar 

  5. Bales, M.E., Lussier, Y.A., Johnson, S.B.: Topological analysis of large-scale biomedical terminology structures. J. Am. Med. Informat. Assoc. 14(6), 788–797 (2007)

    Article  Google Scholar 

  6. Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms and Applications. Springer, London/Berlin (2006)

    Google Scholar 

  7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  9. Barthélemy, M.: Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004)

    Article  Google Scholar 

  10. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS, vol. 3884, Lecture Notes in Computer Science, pp. 524–536. Springer, Berlin (2006)

    Google Scholar 

  11. Bickhard, M.H.: Social ontology as convention. Topoi 27(1-2), 139–149 (2008)

    Article  Google Scholar 

  12. Blohm, S., Kroetzsch, M., Cimiano, P.: Integrating the fast and the numerous – combining machine and community intelligence for semantic annotation and Wikipedia: Folksonomy meets rigorously defined common-sense. In: Proceedings of AAAI 2008 Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy (WikiAI08), Chicago (2008)

    Google Scholar 

  13. Bonchev, D.: Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester (1983)

    Google Scholar 

  14. Botafogo, R.A., Rivlin, E., Shneiderman, B.: Structural analysis of hypertexts: Identifying hierarchies and useful metrics. ACM Trans. Inform. Syst. 10(2), 142–180 (1992)

    Article  Google Scholar 

  15. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Ling. 32(1), 13–47 (2006)

    Article  MATH  Google Scholar 

  16. Caldarelli, G.: Scale-Free Networks. Complex webs in nature and technology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  17. Capocci, A., Caldarelli, G.: Folksonomies and clustering in the collaborative system CiteULike. J. Phys. A Math. Theor. 41, 224016 (2008)

    Article  MathSciNet  Google Scholar 

  18. Capocci, A., Rao, F., Caldarelli, G.: Taxonomy and clustering in collaborative systems: the case of the on-line encyclopedia Wikipedia. Europhys. Lett. 81, 28006 (2008)

    Article  Google Scholar 

  19. Cattuto, C., Barrat, A., Baldassarri, A., Schehr, G., Loreto, V.: Collective dynamics of social annotation. PNAS 106(26), 10511–10515 (2009)

    Google Scholar 

  20. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: The Semantic Web – ISWC 2008, vol. 5318, Lecture Notes in Computer Science, pp. 615–631. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  21. Chernov, S., Iofciu, T., Nejdl, W., Zhou, X.: Extracting semantic relationships between Wikipedia categories. In: 1st International Workshop: From Wiki to Semantics (Sem Wiki 2006), co-located with ESWC 2006, Budva, Montenegro, June 12, 2006

    Google Scholar 

  22. Dehmer, M.: Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 201, 82–94 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Dehmer, M., Mehler, A.: A new method of measuring the similarity for a special class of directed graphs. Tatra Mountains Math. Publ. 36, 39–59 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inform. Sci. 181(1), 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dellschaft, K., Staab, S.: An epistemic dynamic model for tagging systems. In: Hypertext 2008, Proceedings of the 19th ACM Conference on Hypertext and Hypermedia, June 19–21, 2008, Pittsburgh, Pennsylvania, USA, 2008

    Google Scholar 

  26. Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5(9), 2177–2184 (2006)

    Article  Google Scholar 

  27. Estrada, E., Rodríguez-Velázquez, J.A.: Spectral measures of bipartivity in complex networks. Phys. Rev. E 72(4), 046105 (2005)

    Article  MathSciNet  Google Scholar 

  28. Fellbaum, C., (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  29. Firth, J.R.: A synopsis of linguistic theory, 1933–1955. In: Firth, J.R., (ed.) Studies in Linguistic Analysis, pp. 1–32. Blackwell, Oxford (1957)

    Google Scholar 

  30. Freyd, J.J.: Shareability: The social psychology of epistemology. Cognit. Sci. 7, 191–210 (1983)

    Article  Google Scholar 

  31. Hammwöhner, R.: Interlingual aspects of Wikipedia’s quality. In: Proceedings of the International Conference On Information Qualiy (ICIQ 2007) (2007)

    Google Scholar 

  32. Harary, F.: Graph Theory. Addison Wesley, Boston (1969)

    Book  MATH  Google Scholar 

  33. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput. Hum. Interact. 7(2), 174–196 (2000)

    Article  Google Scholar 

  34. Holme, P., Liljeros, F., Edling, C.R., Kim, B.J.: On network bipartivity. Phys. Rev. E 68, 056107 (2003)

    Article  Google Scholar 

  35. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A social book-mark and publication sharing system. In: Proceedings Of the Workshop on Tool Interoperability at the International Conference on Conceptual Structures 2006, pp. 87–102 (2006)

    Google Scholar 

  36. Hotho, A., Nürnberger, A., Paaß, G.: A brief survey of text mining. J. Lang. Tech. Comput. Ling. 20(1), 19–62 (2005)

    Google Scholar 

  37. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptualizations in folksonomies. Web Semant. Sci. Serv. Agents World Wide Web 6(1), 38–53 (2008)

    Article  Google Scholar 

  38. Klein, D.J., Ivanciuc, O.: Graph cyclicity, excess conductance, and resistance deficit. J. Math. Chem. 30(3), 271–287 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Köhler, R.: Systems theoretical linguistics. Theor. Ling. 14(2/3), 241–257 (1987)

    Google Scholar 

  40. Köhler, R.: Syntactic structures, properties and interrelations. J. Quant. Ling. 6, 46–57 (1999)

    Article  Google Scholar 

  41. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T., (eds.) Network Analysis, vol. 3418, Lecture Notes in Computer Science, pp. 16–61. Springer, Berlin (2004)

    Google Scholar 

  42. Kunze, C., Lemnitzer, L.: GermaNet – representation, visualization, application. In Rodriguez, M., González, Paz Suárez Araujo, C., (eds.) Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC 2002), pp. 1485–1491. European Language Resources Association, Paris (2002)

    Google Scholar 

  43. Lambiotte, R., Ausloos, M.: Collaborative tagging as a tripartite network. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J., (eds.) International Conference on Computational Science (3), vol. 3993, Lecture Notes in Computer Science, pp. 1114–1117. Springer, Berlin (2006)

    Google Scholar 

  44. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Comm. ACM 38, 33–38 (1995)

    Article  Google Scholar 

  45. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with Wikipedia. In: Proceedings of AAAI 2008 Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy (WikiAI08), Chicago (2008)

    Google Scholar 

  46. Mehler, A.: Text linkage in the wiki medium – a comparative study. In: Karlgren, J., (ed.) Proceedings of the EACL Workshop on New Text – Wikis and blogs and other dynamic text sources, pp. 1–8. Trento, Italy (2006)

    Google Scholar 

  47. Mehler, A.: Large text networks as an object of corpus linguistic studies. In: Lüdeling, A., Kytö, M., (eds.) Corpus Linguistics. An International Handbook of the Science of Language and Society, pp. 328–382. De Gruyter, Berlin/NewYork (2008)

    Google Scholar 

  48. Mehler, A.: On the impact of community structure on self-organizing lexical networks. In: Smith, A.D.M., Smith, K., Ferrer i Cancho, R., (eds.) Proceedings of the 7th Evolution of Language Conference (Evolang7), pp. 227–234. World Scientific, Barcelona (2008)

    Google Scholar 

  49. Mehler, A.: Structural similarities of complex networks: A computational model by example of wiki graphs. Appl. Artif. Intell. 22(7&8), 619–683 (2008)

    Article  Google Scholar 

  50. Mehler, A.: Generalized shortest paths trees: A novel graph class applied to semiotic networks. In: Dehmer, M., Emmert-Streib, F., (eds.) Analysis of Complex Networks: From Biology to Linguistics, pp. 175–220. Wiley-VCH, Weinheim (2009)

    Chapter  MATH  Google Scholar 

  51. Mehler, A.: Minimum spanning Markovian trees: Introducing context-sensitivity into the generation of spanning trees. In: Dehmer, M., (ed.) Structural Analysis of Complex Networks, pp. 381–401. Birkhäuser/Basel (2010)

    Google Scholar 

  52. Mehler, A., Geibel, P., Pustylnikov, O.: Structural classifiers of text types: Towards a novel model of text representation. J. Lang. Tech. Comput. Ling. 22(2), 51–66 (2007)

    Google Scholar 

  53. Mehler, A., Gleim, R., Ernst, A., Waltinger, U.: WikiDB: Building interoperable wiki-based knowledge resources for semantic databases. Sprache und Datenverarbeitung Int. J. Lang. Data Process. 32(1), 47–70 (2008)

    Google Scholar 

  54. Mehler, A., Gleim, R., Wegner, A.: Structural uncertainty of hypertext types. An empirical study. In: Proceedings of the Workshop “Towards Genre-Enabled Search Engines: The Impact of NLP”, in conjunction with RANLP 2007, pp. 13–19. Borovets, Bulgaria (2007)

    Google Scholar 

  55. Meluk, I.: Dependency Syntax: Theory and Practice. SUNY, Albany (1988)

    Google Scholar 

  56. Mika, P.: Ontologies are us: A unified model of social networks and semantics. J. Web Semant. 5(1), 5–15 (2007)

    Article  Google Scholar 

  57. Mika, P., Gangemi, A.: Descriptions of social relations. In: Proceedings of the 1st Workshop on Friend of a Friend, Social Networking and the (Semantic) Web (2004)

    Google Scholar 

  58. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Proceedings of AAAI 2008 Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy (WikiAI08), Chicago (2008)

    Google Scholar 

  59. Naranan, S., Balasubrahmanyan, V.K.: Models for power law relations in linguistics and information science. J. Quant. Ling. 5(1-2), 35–61 (1998)

    Article  Google Scholar 

  60. Nelson, S.J., Johnston, W.D., Humphreys, B.L.: Relationships in medical subject headings. In: Bean, C.A., Green, R., (eds.) Relationships in the organization of knowledge, pp. 171–184. Kluwer Academic Publishers, New York (2001)

    Chapter  Google Scholar 

  61. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Google Scholar 

  63. Newman, M.E.J., Park, J.: The origin of degree correlations in the internet and other networks. Phys. Rev. E 68, 026121 (2003)

    Article  Google Scholar 

  64. Niles, I., Pease, A.: Towards a standard upper ontology. In: Welty, C., Smith, B., (eds.) Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS-2001), Ogunquit, Maine (2001)

    Google Scholar 

  65. Obdržálek, J.: DAG-width: connectivity measure for directed graphs. In: SODA’06: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 814–821. ACM, New York, NY, USA (2006)

    Google Scholar 

  66. OCLC. Dewey decimal classification summaries. A brief introduction to the Dewey Decimal Classification. http://www.oclc.org/dewey/resources/summaries/default.htm [accessed February 15, 2009], 2008

  67. OpenCyc.org. OpenCyc documentation. http://www.opencyc.org/doc [accessed February 15, 2009], 2008

  68. Pastor-Satorras, R., Vázquez, A., Vesipignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Letters 87(25), 268701 (2001)

    Article  Google Scholar 

  69. Ponzetto, S., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-07), pp. 1440–1447. Vancouver, B.C., Canada (2007)

    Google Scholar 

  70. Pustylnikov, O., Mehler, A.: Structural differentiate of text types. A quantitative model. In: Proceedings of the 31st Annual Conference of the German Classification Society on Data Analysis, Machine Learning, and Applications (GfKl), pp. 655–662 (2007)

    Google Scholar 

  71. Pustylnikov, O., Mehler, A.: Text classification by means of structural features. What kind of information about texts is captured by their structure? In: Proceedings of RUSSIR’08. Taganrog, Russia (2008)

    Google Scholar 

  72. Abramov, O., Mehler, A.: Automatic language classification by means of syntactic dependency networks. J. Quant. Ling. (2011) (accepted)

    Book  Google Scholar 

  73. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)

    Article  MATH  Google Scholar 

  74. Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B.B., (eds.) Cognition and Categorization, pp. 27–48. Erlbaum, Hillsdale, N.J. (1978)

    Google Scholar 

  75. Santini, M.: Characterizing genres of web pages: Genre hybridism and individualization. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS’07) (2007)

    Google Scholar 

  76. Saunders, S.: Improved shortest path algorithms for nearly acyclic graphs. Ph.D thesis, University of Canterbury, Computer Science (2004)

    Google Scholar 

  77. Saunders, S., Takaoka, T.: Improved shortest path algorithms for nearly acyclic graphs. Theor. Comput. Sci. 293(3), 535–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  78. Saunders, S., Takaoka, T.: Solving shortest paths efficiently on nearly acyclic directed graphs. Theor. Comput. Sci. 370(1-3), 94–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Searle, J.R.: Social ontology. Some basic principles. Anthropol. Theor. 6(1), 12–29 (2006)

    Article  Google Scholar 

  80. Skorobogatov, V.A., Dobrynin, A.A.: Metrical analysis of graphs. MATCH 23, 105–155 (1988)

    Google Scholar 

  81. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000)

    Google Scholar 

  82. Steels, L.: Collaborative tagging as distributed cognition. Pragmatics Cognit. 14(2), 287–292 (2006)

    Article  Google Scholar 

  83. Steyvers, M., Tenenbaum, J.: The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognit. Sci. 29(1), 41–78 (2005)

    Article  Google Scholar 

  84. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW’07: Proceedings of the 16th international conference on World Wide Web, pp. 697–706. ACM, New York, NY, USA (2007)

    Google Scholar 

  85. Takaoka, T.: Shortest path algorithms for nearly acyclic directed graphs. Theor. Comput. Sci. 203(1), 143–150 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  86. Tuldava, J.: Probleme und Methoden der quantitativ-systemischen Lexikologie. Wissenschaftlicher Verlag, Trier (1998)

    Google Scholar 

  87. Ulanowicz, R.E.: Identifying the structure of cycling in ecosystems. Math. Biosci. 65(2), 219–237 (1983)

    Article  MATH  Google Scholar 

  88. Voss, J.: Collaborative thesaurus tagging the Wikipedia way. arXiv.org:cs/0604036 (2006)

    Google Scholar 

  89. Waltinger, U., Mehler, A., Heyer, G.: Towards automatic content tagging: Enhanced web services in digital libraries using lexical chaining. In: Cordeiro, J., Filipe, J., Hammoudi, S., (eds.) 4th Int. Conf. on Web Information Systems and Technologies (WEBIST ’08), pp. 231–236. INSTICC Press, Barcelona, Funchal, Portugal (2008)

    Google Scholar 

  90. Watts, D.J.: Six Degrees. The Science of a Connected Age. W. W. Norton & Company, New York/London (2003)

    Google Scholar 

  91. Zelinka, B.: Nearly acyclic digraphs. Czech. Math. J. 33(1), 164–165 (1983)

    MathSciNet  MATH  Google Scholar 

  92. Zipf, G.K.: Human Behavior and the Principle of Least Effort. An Introduction to Human Ecology. Hafner Publishing Company, New York (1972)

    Google Scholar 

  93. Zlatic, V., Bozicevic, M., Stefancic, H., Domazet, M.: Wikipedias: Collaborative web-based encyclopedias as complex networks. Phys. Rev. E 74, 016115 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

Financial support of the German Federal Ministry of Education (BMBF) through the research project Linguistic Networks, of the German Research Foundation (DFG) through the Excellence Cluster 277 Cognitive Interaction Technology (via the Project KnowCIT) and of the SFB 673 Alignment in Communication (via the Project A3 Dialogue Games and Group Dynamics and X1 Multimodal Alignment Corpora: Statistical Modeling and Information Management) is gratefully acknowledged. We also thank Dietmar Esch, Tobias Feith, and Roman Pustylnikov for the download of ontologies as well as Rüdiger Gleim, Olga Abramov, and Paul Warner for their fruitful hints which helped to reduce the number of errors in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mehler, A. (2011). Social Ontologies as Generalized Nearly Acyclic Directed Graphs: A Quantitative Graph Model of Social Tagging. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_10

Download citation

Publish with us

Policies and ethics