Averaging Normal Forms for Partial Differential Equations with Applications to Perturbed Wave Equations



Normalization and normal forms play an important part in mathematical analysis and algebra. For instance, n×n-matrices can be put in Jordan normal form. Such an example also makes it clear that normalization is not a unique procedure as the choice of normalization of matrices depends on its purpose. In the case of matrices there is a vast literature with many possibilities, but in all special cases and in other mathematical problems as well, the general aim of normalization is a simplification of the object by transformation.


Periodic Solution Normal Form Parametric Resonance Parametric Excitation Tidal Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BMV]
    Bakri, T., Meijer, H.G.E, Verhulst, F.: Emergence and bifurcations of Lyapunov manifolds in nonlinear wave equations, J. Nonlinear Sci. (to appear).Google Scholar
  2. [Bu93]
    Buitelaar, R.P.: The Method of Averaging in Banach Spaces, Ph.D. Thesis, University of Utrecht, The Netherlands (1993).Google Scholar
  3. [HeKrVe95]
    Heijnekamp, J.J., Krol, M.S., Verhulst, F.: Averaging in non-linear advective transport problems. Math. Methods Appl. Sci., 18, 437–448 (1995).CrossRefMathSciNetGoogle Scholar
  4. [Kr91]
    Krol, M.S.: On the averaging method in nearly time-periodic advection-diffusion problems. SIAM J. Appl. Math., 51, 1622–1637 (1991).CrossRefMathSciNetGoogle Scholar
  5. [RaEtAl99]
    Rand, R.H., Newman, W.I., Denardo, B.C., Newman, A.L.: Dynamics of a nonlinear parametrically-excited partial differential equation, in Proc. Design Engng. Techn. Conferences 3 (1995), 57–68. (See also Chaos, 9, 242–253 (1999).)Google Scholar
  6. [SaVeMu07]
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd ed., Springer, Berlin (2007).MATHGoogle Scholar
  7. [Sa75]
    Sanchez-Palencia, E.: Méthode de centrage et comportement des trajectoires dans l'espace des phases. C.R. Acad. Sci. Paris Sér. A, 280, 105–107 (1975).MathSciNetGoogle Scholar
  8. [Sa76]
    Sanchez-Palencia, É.: Méthode de centrage - estimation de l'erreur et comportement des trajectoires dans l'espace des phases. Internat. J. Nonlinear Mech., 11, 251–263 (1976).Google Scholar
  9. [SeMa03]
    Seyranian, A.P., Mailybaev, A.P.: Multiparameter Stability Theory with Mechanical Applications, World Scientific, Singapore (2003).MATHGoogle Scholar
  10. [TuVe00]
    Tuwankotta, J.M., Verhulst, F.: Symmetry and resonance in Hamiltonian systems. SIAM J. Appl. Math., 61, 1369–1385 (2000).MathSciNetGoogle Scholar
  11. [Ve05]
    Verhulst, F.: Methods and Applications of Singular Perturbations, Boundary Layers and Multiple Timescale Dynamics, Springer, Berlin (2005). (For comments and corrections, see the website www.math.uu.nl/people/verhulst.)MATHGoogle Scholar
  12. [Ve09]
    Verhulst, F.: Perturbation Analysis of Parametric Resonance, in Encyclopedia of Complexity and System Science. Perturbation Theory, Gaeta, G., ed., Springer, Berlin (2009).Google Scholar
  13. [WiHo97]
    Wittenberg, R.W., Holmes, P.: The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Physica D, 100, 1–40 (1997).CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of UtrechtUtrechtThe Netherlands

Personalised recommendations