Propagation of Waves in Networks of Thin Fibers



This chapter contains a simplified and improved version of the results obtained by the authors earlier.Wave propagation is discussed in a network of branched thin wave guides when the thickness vanishes and the wave guides shrink to a one-dimensional graph. It is shown that asymptotically one can describe the propagating waves, the spectrum and the resolvent in terms of solutions of ordinary differential equations (ODEs) on the limiting graph. The vertices of the graph correspond to junctions of the wave guides. In order to determine the solutions of the ODEs on the graph uniquely, one needs to know the gluing conditions (GC) on the vertices of the graph.

Unlike other publications on this topic, we consider the situation when the spectral parameter is greater than the threshold, i.e., the propagation of waves is possible in cylindrical parts of the network. We show that the GC in this case can be expressed in terms of the scattering matrices related to individual junctions. The results are extended to the values of the spectral parameter below the threshold and around it.


Incident Wave Branch Point Continuous Spectrum Wave Guide Quantum Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bi62]
    Birman, M.S.: Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions. Vestnik Leningrad. Univ., 17, 22-55 (1962) (Russian).MathSciNetGoogle Scholar
  2. [DeTe06]
    Dell’Antonio, G., Tenuta, L.: Quantum graphs as holonomic constraints. J. Math. Phys., 47, article 072102 (2006).CrossRefMathSciNetGoogle Scholar
  3. [DuExSt95]
    Duclos, P., Exner, P., Stovicek, P.: Curvature-induced resonances in a two-dimensional Dirichlet tube. Ann. Inst. H. Poincaré, 62, 81-101 (1995).MATHMathSciNetGoogle Scholar
  4. [ExPo05]
    Exner, P., Post, O.: Convergence of spectra of graph-like thin manifolds. J. Geom. Phys., 54, 77-115 (2005).MATHCrossRefMathSciNetGoogle Scholar
  5. [ExSe89a]
    Exner, P., Šeba, P.: Electrons in semiconductor microstructures: a challenge to operator theorists, in Schrödinger Operators, Standard and Nonstandard, World Scientific, Singapore (1989), 79-100.Google Scholar
  6. [ExSe89b]
    Exner, P., Šba, P.: Bound states in curved quantum waveguides. J. Math. Phys., 30, 2574-2580 (1989).MATHCrossRefMathSciNetGoogle Scholar
  7. [ExSe90]
    Exner, P., Šeba, P.: Trapping modes in a curved electromagnetic waveguide with perfectly conducting walls. Phys. Lett. A, 144, 347-350 (1990).CrossRefMathSciNetGoogle Scholar
  8. [ExVu96]
    Exner, P., Vugalter, S.A.: Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window. Ann. Inst. H. Poincaré Phys. Theor., 65, 109-123 (1996).MATHMathSciNetGoogle Scholar
  9. [ExVu99]
    Exner, P., Vugalter, S.A.: On the number of particles that a curved quantum waveguide can bind. J. Math. Phys., 40, 4630-4638 (1999).MATHCrossRefMathSciNetGoogle Scholar
  10. [ExWe01]
    Exner, P., Weidl, T.: Lieb-Thirring inequalities on trapped modes in quantum wires, in Proceedings of the XIII International Congress on Mathematical Physics, International Press, Boston (2001), 437-443.Google Scholar
  11. [FrWe93]
    Freidlin, M., Wentzel, A.: Diffusion processes on graphs and averaging principle. Ann. Probab., 21, 2215-2245 (1993).MATHCrossRefMathSciNetGoogle Scholar
  12. [Fr96]
    Freidlin, M.: Markov Processes and Differential Equations: Asymptotic Problems, Birkhäuser, Basel (1996).Google Scholar
  13. [Gr08]
    Grieser, D.: Spectra of graph neighborhoods and scattering. Proc. London Math. Soc., 97, 718-752 (2008).MATHCrossRefMathSciNetGoogle Scholar
  14. [KoSc99]
    Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum waves. J. Phys. A, 32, 595-630 (1999).MATHCrossRefMathSciNetGoogle Scholar
  15. [Ku02]
    Kuchment, P.: Graph models of wave propagation in thin structures. Waves in Random Media, 12, 1-24 (2002).CrossRefMathSciNetGoogle Scholar
  16. [Ku04]
    Kuchment, P.: Quantum graphs. I. Some basic structures. Waves in Random Media, 14, 107-128 (2004).CrossRefMathSciNetGoogle Scholar
  17. [Ku05]
    Kuchment, P.: Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38, 4887-4900 (2005).MATHCrossRefMathSciNetGoogle Scholar
  18. [KuZe01]
    Kuchment, P., Zeng, H.: Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl., 258, 671-700 (2001).MATHCrossRefMathSciNetGoogle Scholar
  19. [KuZe03]
    Kuchment, P., Zeng, H.: Asymptotics of spectra of Neumann Laplacians in thin domains, in Advances in Differential Equations and Mathematical Physics, Karpeshina, Yu. et al. (eds.), American Mathematical Society, Providence, RI (2003), 199-213.Google Scholar
  20. [MoVa06]
    Molchanov, S., Vainberg, B.: Transition from a network of thin fibers to quantum graph: an explicitly solvable model, in Contemporary Mathematics, American Mathematical Society, Providence, RI (2006), 227-240.Google Scholar
  21. [MoVa07]
    Molchanov, S., Vainberg, B.: Scattering solutions in networks of thin fibers: small diameter asymptotics. Comm. Math. Phys., 273, 533-559 (2007).MATHCrossRefMathSciNetGoogle Scholar
  22. [MoVa08]
    Molchanov, S., Vainberg, B.: Laplace operator in networks of thin fibers: spectrum near the threshold, in Stochastic Analysis in Mathematical Physics, World Scientific, Hackensack, NJ (2008), 69-93.Google Scholar
  23. [MiPa02]
    Mikhailova, A., Pavlov, B., Popov, I., Rudakova, T., Yafyasov, A.: Scattering on a compact domain with few semi-infinite wires attached: resonance case. Math. Nachr., 235, 101-128 (2002).MATHCrossRefMathSciNetGoogle Scholar
  24. [PaRo03]
    Pavlov, B., Robert, K.: Resonance optical switch: calculation of resonance eigenvalues, in Waves in Periodic and Random Media, American Mathematical Society, Providence, RI (2003), 141-169.Google Scholar
  25. [Po05]
    Post, O.: Branched quantum wave guides with Dirichlet BC: the de-coupling case. J. Phys. A, 38, 4917-4932 (2005).MATHCrossRefMathSciNetGoogle Scholar
  26. [Po06]
    Post, O.: Spectral convergence of non-compact quasi-one-dimensional spaces. Ann. Henri Poincaré, 7, 933-973 (2006).MATHCrossRefMathSciNetGoogle Scholar
  27. [RuSc01]
    Rubinstein, J., Schatzman, M.: Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Rational Mech. Anal., 160, 293-306 (2001).Google Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of North CarolinaCharlotteUSA

Personalised recommendations