Advertisement

On Burnett Coefficients in Periodic Media with Two Phases

  • C. Conca
  • J. San Martín
  • L. Smaranda
  • M. Vanninathan
Chapter

Abstract

In this chapter, we consider periodic media with a small period μ and we are interested in Burnett coefficients. These parameters are important in the study of acoustic wave propagation in such media since various physical constants associated with wave propagation (like reflection, refraction, transmission, and dispersion coefficients) are included in the Burnett coefficients.

Keywords

Peri Refraction Romania Milton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BLP78]
    Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, (1978).MATHGoogle Scholar
  2. [COV02]
    Conca, C., Orive, R., Vanninathan, M.: Bloch approximation in homogenization and applications. SIAM J. Math. Anal., 33, 1166–1198 (2002).MATHCrossRefMathSciNetGoogle Scholar
  3. [COV06]
    Conca, C., Orive, R., Vanninathan, M.: On Burnett coefficients in periodic media. J. Math. Phys., 47, 032902, 11 pages (2006).CrossRefMathSciNetGoogle Scholar
  4. [CPV95]
    Conca, C., Planchard, J., Vanninathan, M.: Fluids and Periodic Structures, Wiley, Chichester (1995).MATHGoogle Scholar
  5. [CSMSV]
    Conca, C., San Martín, J., Smaranda, L., Vanninathan, M.: Optimal bounds on dispersion coefficient in one-dimensional periodic media. Math. Models Methods Appl. Sci., 19 (2009), Doi: 10.1142/S0218202509003930.Google Scholar
  6. [CSMSV08]
    Conca, C., San Martín, J., Smaranda, L., Vanninathan, M.: On Burnett coefficients in periodic media in low contrast regime. J. Math. Phys., 49, 053514, 23 pages (2008).CrossRefMathSciNetGoogle Scholar
  7. [CV97]
    Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math., 57, 1639–1659 (1997).MATHCrossRefMathSciNetGoogle Scholar
  8. [Mil02]
    Milton, G.W.: The Theory of Composites, Cambridge University Press, London (2002).MATHGoogle Scholar
  9. [MT97]
    Murat, F., Tartar, L.: Calculus of variations and homogenization, in Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, Boston, MA (1997), 139–173.Google Scholar
  10. [Tor02]
    Torquato, S.: Random Heterogeneous Materials, Springer, New York (2002).MATHGoogle Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. Conca
    • 1
  • J. San Martín
    • 1
  • L. Smaranda
    • 2
  • M. Vanninathan
    • 3
  1. 1.Universidad de ChileSantiagoChile
  2. 2.University of PiteştiPiteştiRomania
  3. 3.Tata Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations