A High-Order Finite Volume Method for Nonconservative Problems and Its Application to Model Submarine Avalanches

  • M. J. Castro Díaz
  • E. D. Fernández-Nieto
  • J. M. González-Vida
  • A. Mangeney
  • C. Parés


In this chapter we investigate how to apply a high-order finite volume method to discretize the model proposed in [FeBo08] to study submarine avalanches.

The model proposed by Fernández-Nieto et al. in [FeBo08] is an integrated two-layer model of Savage–Hutter type. The upper layer models the fluid, and the second layer is assumed to be constituted by sediment or rocks. The derivation of the model is done by taking into account some physical properties of both layers: density, porosity, friction angle in a Coulomb law, internal friction angle between particles, and buoyancy.

The previous model reduces to the one proposed by Savage and Hutter to study avalanches of granular materials when the height of the water layer tends to zero. In the pioneering works of Savage and Hutter (see [SaHu91]) a model to study avalanches over an inclined slope is proposed. They derive their model by integration of Euler equations and assuming a Coulomb friction law. Bouchut et al. in [BoMa03] propose a generalization of the model in order to take into account more general topographies. In particular, the angle of the bottom with the horizontal is not constant and depends on spatial variables. They show that a new term depending on the curvature is necessary to be introduced in the model in order to preserve stationary solutions and to verify an entropy inequality.


Entropy Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BoMa03]
    Bouchut, F., Mangeney-Castelnau, A., Perthame, B., Vilotte, J.P.: A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow flows. C.R. Acad. Sci. Paris Sér I, 336, 531-536 (2003).MATHMathSciNetGoogle Scholar
  2. [CaFe05]
    Castro, M.J., Ferreiro, A.M., García, J.A., González, J.M., Macías, J., Parés, C., Vázquez, M.E.: On the numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems. Match Comput. Model., 42, 419-439 (2005).MATHCrossRefGoogle Scholar
  3. [CaGa06]
    Castro, M.J., Gallardo, J.M. Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems. Math. Comput., 75, 1103-1134 (2006).MATHCrossRefGoogle Scholar
  4. [DaLe95]
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl., 74, 483-548 (1995).MATHMathSciNetGoogle Scholar
  5. [FeBo08]
    Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Castro, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys., 227, 7720-7754 (2008).MATHCrossRefMathSciNetGoogle Scholar
  6. [Ma94]
    Marquina, A.: Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput., 15, 892-915 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. [Pa06]
    Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal., 44, 300-321 (2006).MATHCrossRefMathSciNetGoogle Scholar
  8. [SaHu91]
    Savage, S.B., Hutter, K.: The dynamics of avalanches of granular materials from initiation to run-out. Acta Mech., 86, 201-223 (1991).MATHCrossRefMathSciNetGoogle Scholar
  9. [To92]
    Toumi, I.: A weak formulation of Roe approximate Riemann solver. J. Comput. Phys., 102, 360-373 (1992).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  • M. J. Castro Díaz
    • 1
  • E. D. Fernández-Nieto
    • 2
  • J. M. González-Vida
    • 1
  • A. Mangeney
    • 3
  • C. Parés
    • 1
  1. 1.Universidad de MálagaMálagaSpain
  2. 2.Universidad de SevillaSevillaSpain
  3. 3.Institut de Physique du Globe de ParisParisFrance

Personalised recommendations