Skip to main content

High-Performance Computing for Spectral Approximations

  • Chapter
  • First Online:
  • 1316 Accesses

Abstract

In this chapter, we focus on the numerical solution of large eigenvalue problems arising in finite-rank discretizations of integral operators.

Let X be a Banach space over ℂ and T a compact linear operator defined on X. We aim to solve numerically the eigenvalue problem

$$T\varphi = \lambda\varphi,$$

with λ nonzero and ϕ defined in X. Approximations λ m and ϕ m for the spectral elements of the integral operator can be obtained by solving

$$T_{m\varphi m} = \theta_{m\varphi m},$$

where (T m ) is a sequence of finite-rank operators converging to T [AhLa01]. By evaluating the projected problem on a specific basis function, it is reduced to a matrix spectral problem

$$A_m x_m = \theta_m x_m$$
(33.1)

for a finite matrix A m [AhLa06].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahues, M., d'Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.B.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. J. Comput. Appl. Math., 140, 13–26 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahues, M., Largillier, A., d'Almeida, F.D., Vasconcelos, P.B.: Defect correction for spectral computations for a singular integral operator. Comm. Pure Appl. Anal., 5, 241–250 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations with Bounded Operators, CRC, Boca Raton, FL (2001).

    Google Scholar 

  4. Blackford, L.S. et al.: ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA (1997).

    MATH  Google Scholar 

  5. Drummond, L.A., Marques, O.A.: An overview of the advanced computational software (ACTS) collection. ACM Trans. Math. Software, 31, 282–301 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  6. Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners, in Lecture Notes in Computer Science, 2331, 632–641 (2002).

    Article  Google Scholar 

  7. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press, Cambridge, MA (1999).

    Google Scholar 

  8. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. Trans. IMACS, 41, 155–177 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. Hernandez, V., Roman, J.E., Vidal, V.M.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software, 31, 351–362 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users' Guide. Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, Society for Industrial and Applied Mathematics, Philadelphia, PA (1998).

    Google Scholar 

  11. Rutily, B.: Multiple scattering theoretical and integral equations, in Integral Methods in Science and Engineering: Analytic and Numerical Techniques, Constanda, C., Ahues, M., Largillier, A. (eds.), Birkhäuser, Boston, 211–231 (2004).

    Google Scholar 

  12. Stathopoulos, A.: Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM J. Scientific Comput., 29, 481–514 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl., 23, 601–614 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. Vasconcelos, P.B., Marques, O.: Comparison of parallel eigensolvers for a discretized radiative transfer problem, Proc. Appl. Math. Mech., 7, 1022805–1022806 (2008).

    Article  Google Scholar 

  15. Vasconcelos, P.B., Marques, O., Roman, J.E.: Parallel eigensolvers for a discretized radiative transfer problem, in Lecture Notes in Computer Science, 5336, 336–348 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Vasconcelos, P.B., Marques, O., Roman, J.E. (2010). High-Performance Computing for Spectral Approximations. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_33

Download citation

Publish with us

Policies and ethics