Boundary Element Collocation Method for Time-Fractional Diffusion Equations



In this chapter, we discuss the numerical solution of the space-time boundary integral equation
$$S_{\Gamma u \Gamma} (x, t) = \int^t_0 \int_\Gamma u_\Gamma (y, \tau)E(x - y, t - \tau){\rm d}s_y {\rm d}\tau = f(x, t),\ \ x \in \Gamma, \quad 0 < t < T,$$
where Γ is a smooth plane curve. The kernel of the integral operator,
$$E(x,t) = \frac{1} {\pi }t^{\alpha - 1} |x|^{ - 2} H_{12}^{20} \left( {\frac{1} {4}|x|^2 t^{ - \alpha } |\begin{array}{*{20}l} {(\alpha ,\alpha )} \\ {(1,1),(1,1)} \\ \end{array} } \right),\,\,\,\,\,\,0 < \alpha \leq 1,$$
is the fundamental solution of the time-fractional diffusion equation (see [KiSa04] and [PBM90]). We consider the problem
$$\begin{array}{c}\partial^\alpha_t \Phi - \Delta\Phi = 0, \ \ {\rm in} \ Q_T = \Omega \times (0, T),\\ B\Phi = g, {\rm on} \sum_T = \Gamma \times (0, T),\\ \Phi(x, 0) = 0, \ x \in \Omega,\end{array}$$
where the boundary operator B(Φ) = Φ|ΣT and ∂α t is the Caputo time derivative of the fractional order 0 < α ≤ 1.

We shall consider the spline collocation method for the numerical approxproductimation of the solution on quasi-uniform meshes with piecewise linear tensor splines as the approximation space. We will show that the spline collocation method is stable in a suitable anisotropic Sobolev space, and it furnishes quasi-optimal error estimates.


Approximation Space Spline Space Boundary Integral Operator Anisotropic Sobolev Space Spline Collocation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BaAz72]
    Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Aziz, A.K., ed., Academic Press (1972).Google Scholar
  2. [Co92]
    Costabel, M.: Boundary integral operators for the heat equation. Integral Equations Oper. Theory, 13, 498–552 (1992).CrossRefMathSciNetGoogle Scholar
  3. [CoSa00]
    Costabel, M., Saranen, J.: Spline collocation for convolutional parabolic boundary integral equations. Numer. Math., 84, 417–449 (2000).MATHCrossRefMathSciNetGoogle Scholar
  4. [CoSa01]
    Costabel, M., Saranen, J.: Parabolic boundary integral operators, symbolic representations and basic properties. Integral Equations Oper. Theory, 40, 185–211 (2001).MATHCrossRefMathSciNetGoogle Scholar
  5. [EiKo04]
    Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equation. J. Differential Equations, 199, 211–255 (2004).MATHCrossRefMathSciNetGoogle Scholar
  6. [ElSc85]
    Elschner, J., Schmidt, G.: On spline interpolation in periodic Sobolev spaces. Preprint 01/83, Dept. Math. Akademie der Wissenschaften der DDR, Berlin (1985).Google Scholar
  7. [HaSa94]
    Hamina, M., Saranen, J.: On the spline collocation method for the single-layer heat operator equation. Math. Comp., 62, 41–64 (1994).MATHCrossRefMathSciNetGoogle Scholar
  8. [HsSa89]
    Hsiao, G.C., Saranen, J.: Coercivity of the single-layer heat operator. Report 89–2, Center for Mathematics and Waves, University of Delaware (1989).Google Scholar
  9. [HsSa93]
    Hsiao, G.C., Saranen, J.: Boundary integral solution of the two-dimensional heat equation. Math. Methods Appl. Sci., 16, 87–114 (1993).MATHCrossRefMathSciNetGoogle Scholar
  10. [Hä98]
    Hämäläinen J.: Spline collocation for the single-layer heat equation. Ann. Acad. Sci. Fenn., Mathematica Dissertationes 113 (1998).Google Scholar
  11. [KeRuI]
    Kemppainen, J., Ruotsalainen, K.: Boundary integral solution of the time-fractional diffusion equation. This volume, 213–222.Google Scholar
  12. [KeRuII]
    Kemppainen, J., Ruotsalainen, K.: Numerical approximation of the boundary integral equations for two-dimensional fractional diffusion equations (in preparation).Google Scholar
  13. [KiSa04]
    Kilbas, A.A., Saigo, M.: H-transforms: Theory and Applications, CRC Press, Boca Raton, FL (2004).MATHGoogle Scholar
  14. [LiMaI72]
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer, Berlin (1972).MATHGoogle Scholar
  15. [LiMaII72]
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Vol. II, Springer, Berlin (1972).MATHGoogle Scholar
  16. [PBM90]
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 3. More Special Functions, Overseas Publishers Association, Amsterdam (1990).Google Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.University of OuluOuluFinland

Personalised recommendations