Skip to main content

Construction of Solutions of the Hamburger–Löwner Mixed Interpolation Problem for Nevanlinna Class Functions

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2

Abstract

By definition, a Nevanlinna class function \(\varphi \in \Re\) is holomorphic and has a nonnegative imaginary part in the half-plane Im z > 0. In this chapter we also consider Nevanlinna functions which belong to the subclass \(\Re_0 \subset \Re\) such that if \(\varphi(z) \in \Re_0, \lim\nolimits_{z\to \infty} (\varphi(z)/z) = 0\), Im z > 0. Then, due to the Riesz–Herglotz theorem,

$$\varphi(z)=\int\limits^\infty_{-\infty}\frac{d\sigma(t)}{t-z}, \quad {\rm Im} \ z>0,$$

where σ(t) is a nondecreasing function such that

$$\int^\infty_{-\infty} (1+t^2)^{-1} \ d\sigma(t) < \infty$$

. Consider the mixed Löwner–Nevanlinna problem [Löw34, KrNu77, Akh65, KaSt66, CuFi91, CuFi96, AdTk00, UrTkFC01, AdAlTk03], see also [AdTk01(a)] and (for the matrix version of the problem) [AdTk01(b)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamyan, V.M., Tkachenko, I.M.: Solution of the truncated Hamburger moment problem according to M.G. Krein. Operator Theory Adv. Appl., OT-118, 33-51 (2000).

    MathSciNet  Google Scholar 

  2. Adamyan, V.M., Tkachenko, I.M.: Truncated Hamburger moment problems with constraints. Math. Studies, 189, 321-333 (2001).

    MathSciNet  Google Scholar 

  3. Adamyan, V.M., Tkachenko, I.M.: Truncated Hamburger matrix moment problems with constraints. Proc. Appl. Math. Mech., 1, 420-421 (2001).

    Article  Google Scholar 

  4. Adamyan, V.M., Alcober, J.A., Tkachenko, I.M.: Reconstruction of distributions by their moments and local constraints. Appl. Math. Research eXpress, 2003, 33-70.

    Google Scholar 

  5. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York (1965).

    MATH  Google Scholar 

  6. Curto, R.E., Fialkow, L.A.: Recursiveness, positivity, and truncated moment problems. Houston J. Math., 17, 603-635 (1991).

    MATH  MathSciNet  Google Scholar 

  7. Curto, R.E., Fialkow, L.A.: Solutions of the truncated moment problem for flat data. Mem. Amer. Math. Soc., 119 (1996).

    Google Scholar 

  8. Dewilde, P., Dym, H.: Schur recursions, error formulas, and convergence of rational estimators for stationary stochastic sequences. IEEE Trans. Information Theory, IT-27, 446-461 (1981).

    Article  MathSciNet  Google Scholar 

  9. Krein, M.G., Nudel'man, A.A.: The Markov Moment Problem and Extremal Problems, American Mathematical Society, Providence, RI (1977).

    MATH  Google Scholar 

  10. Karlin, S., Studden, W.S.: Tschebyscheff Systems with Applications in Analysis and Statistics, Interscience, New York (1966).

    Google Scholar 

  11. Khargonekar, P., Tannenbaum, A.: Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty. IEEE Trans. Automat. Contr., AC-30, 1005-1013 (1985).

    Article  MathSciNet  Google Scholar 

  12. Löwner, K.: Über monotone Matrixfunktionen. Math. Z., 38, 177 (1934).

    Article  MathSciNet  Google Scholar 

  13. Tkachenko, I.M., Urrea, M.: Determination of the adjustable moment model parameter by the minimization of the Shannon entropy. Z. Angew. Math. Mech., 79, 789-790 (1999).

    Google Scholar 

  14. Urrea, M., Tkachenko, I.M., Fernández de Córdoba, P.: The Nevanlinna theorem of the classical theory of moments revisited. J. Appl. Anal., 7, 209-224 (2001).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alcober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Alcober, J.A., Tkachenko, I.M., Urrea, M. (2010). Construction of Solutions of the Hamburger–Löwner Mixed Interpolation Problem for Nevanlinna Class Functions. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_2

Download citation

Publish with us

Policies and ethics