Skip to main content

High-Order Methods for Weakly Singular Volterra Integro-Differential Equations

  • Chapter
  • First Online:
Integral Methods in Science and Engineering, Volume 2
  • 1352 Accesses

Abstract

Let \(\mathcal{R} = ( - \infty ,\infty ),\,\,b > 0,\,\Delta _b = \{ (t,\,s)\,\, \in \,\mathcal{Z}^2 \,:\,0\, \leq \,t\, \leq \,b,\,0\, \leq \,s\, < \,t\} ,\,\overline \Delta _b = \{ (t,s) \in \mathcal{R}^2 :0 \leq s\, \leq \,t \leq \,b\} .\) We consider a linear integro-differential equation of the form

$$y^\prime(t) = p(t)y(t) + q(t) + \int\limits^t_0 K_0(t, s)y(s)ds + \int\limits^t_0 K_1(t, s)y^\prime(s)ds, \quad 0 \leq t \leq b,$$
(14.1)

with given initial condition

$$y(0) = y_0, \quad y_0 \in \mathcal{R}$$
(14.2)

We assume that \(K_0, K_1 \in W^{m,\nu} (\Delta_b), p, \ q, \ \in C^{m, \nu}(0, b], m\ \in \mathbb{N} = \{1, 2, \ldots\}, \ \nu \in \mathcal{R}, \ \nu < 1.\)

For given $$$$ and ?∞ < ν < 1 we define W m,νb) as the set of all m-times continuously differentiable functions \(K : \Delta_b \to \mathcal{R}\) satisfying

$$\left|\left(\frac{\partial}{\partial t}\right)^i \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial s}\right)^j K(t, s)\right|\leq c\begin{cases}1 \qquad\qquad\qquad \quad{\rm if} \ \ \nu + i < 0,\\ 1 + |\log(t - s)| \quad {\rm if} \ \ \nu + i = 0,\\ (t - s)^{-\nu-i} \ \ \quad\quad {\rm if} \ \ \nu + i > 0,\end{cases}$$
(14.3)

with a constant c = c(K) for all (t, s) ∈ Δb and all nonnegative integers i and j such that i + j ? m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baratella, P., Orsi, A.P.: Numerical solution of weakly singular linear Volterra integro-differential equations. Computing, 77, 77-96 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  2. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, London (2004).

    MATH  Google Scholar 

  3. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations, North-Holland, Amsterdam (1986).

    MATH  Google Scholar 

  4. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal., 39, 957-982 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. Brunner, H., Pedas, A., Vainikko, G.: A spline collocation method for linear Volterra integro-differential equations with weakly singular kernels. BIT Numer. Math., 41, 891-900 (2001).

    Article  MathSciNet  Google Scholar 

  6. Brunner, H., Tang, T.: Polynomial spline collocation methods for the nonlinear Basset equation. Comput. Math. Appl., 18, 449-457 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, Y., Huang, M., Liu, L., Xu, Y.: Hybrid collocation methods for Fredholm integral equations with weakly singular kernels. Appl. Numer. Math., 57, 549-561 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. Kangro, R., Parts, I.: Superconvergence in the maximum norm of a class of piecewise polynomial collocation methods for solving linear weakly singular Volterra integro-differential equations. J. Integral Equations Appl., 15, 403-427 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. McKee, S., Stokes, A.: Product integration methods for the nonlinear Basset equation. SIAM J. Numer. Anal., 20, 143-160 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  10. Parts, I.: Optimality of theoretical estimates for spline collocation methods for linear weakly singular Volterra integro-differential equations. Proc. Estonian Acad. Sci. Phys. Math., 54, 162-180 (2005).

    MATH  MathSciNet  Google Scholar 

  11. Parts, I., Pedas, A.: Collocation approximations for weakly singular Volterra integro-differential equations. Math. Model. Anal., 8, 315-328 (2003).

    MATH  MathSciNet  Google Scholar 

  12. Pedas, A.: Piecewise polynomial approximations for linear Volterra integro-differential equations with nonsmooth kernels, in: Numerical Mathematics and Advanced Applications, Feistauer, M. , eds., Springer, Berlin-Heidelberg, (2004), 677-686.

    Google Scholar 

  13. Pedas, A., Tamme, E.: Spline collocation method for integro-differential equations with weakly singular kernels. J. Comput. Appl. Math., 197, 253-269 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. Pedas, A., Tamme, E.: Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math., 213, 111-126 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  15. Pedas, A., Vainikko, G.: Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations. Computing, 73, 271-293 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math., 61, 373-382 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal., 13, 93-99 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  18. Vainikko, G.: Multidimensional Weakly Singular Integral Equations, Springer, Berlin-Heidelberg-New York (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Diogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Diogo, T., Kolk, M., Lima, P., Pedas, A. (2010). High-Order Methods for Weakly Singular Volterra Integro-Differential Equations. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_14

Download citation

Publish with us

Policies and ethics