Conventional Sliding Mode Observers

  • Yuri Shtessel
  • Christopher Edwards
  • Leonid Fridman
  • Arie Levant
Part of the Control Engineering book series (CONTRENGIN)


The purpose of an observer is to estimate the unmeasurable states of a system based only on the measured outputs and inputs. It is essentially a mathematical replica of the system, driven by the input of the system together with a signal representing the difference between the measured system and observer outputs. In the earliest observer, attributed to Luenberger, the difference between the output of the plant and the observer is fed back linearly into the observer. However, in the presence of unknown signals or uncertainty, a Luenberger observer is usually (a) unable to force the output estimation error to zero and (b) the observer states do not converge to the system states. A sliding mode observer, which feeds back the output estimation error via a nonlinear switching term, provides an attractive solution to this issue. Provided a bound on the magnitude of the disturbances is known, the sliding mode observer can force the output estimation error to converge to zero in finite time, while the observer states converge asymptotically to the system states. In addition, disturbances within the system can also be reconstructed.


Unknown Input Mode Observer Symmetric Positive Definite Matrix Distribution Matrix Slide Mode Observer 


  1. 7.
    Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-tolerant Control Using Sliding Modes. Advances in Industrial Control Series. Spring, Berlin (2011)MATHCrossRefGoogle Scholar
  2. 37.
    Bondarev, A.G., Bondarev, S.A., Kostylyeva, N.Y., Utkin, V.I.: Sliding modes in systems with asymptotic state observers. Automatica i telemechanica (Automat. Rem. Contr.) 46(5), 679–684 (1985)Google Scholar
  3. 38.
    Boyd, S.P., El Ghaoui, L., Feron, E. Balakrishnan V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994).Google Scholar
  4. 62.
    Drakunov, S., Utkin, V.I.: Sliding mode observers: tutorial. In: Proceedings of the 34th IEEE Conference of Decision and Control, vol. 4, pp. 3376–3378, New Orleans, LA (1995)Google Scholar
  5. 65.
    Edwards, C., Spurgeon, S.K.: On the development of discontinuous observers. Int. J. Control 59(5), 1211–1229 (1994)MATHMathSciNetCrossRefGoogle Scholar
  6. 69.
    Edwards, C., Tan, C.P.: A comparison of sliding mode and unknown input observers for fault reconstruction. Eur. J. Control 16, 245–260 (2006)MathSciNetCrossRefGoogle Scholar
  7. 70.
    Edwards, C., Spurgeon, S.K, Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)MATHMathSciNetCrossRefGoogle Scholar
  8. 78.
    Fan, X. Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50, 319–330 (2003)MATHMathSciNetCrossRefGoogle Scholar
  9. 99.
    Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI Control Toolbox, User Guide. MathWorks Inc., Natick (1995)Google Scholar
  10. 134.
    Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)CrossRefGoogle Scholar
  11. 135.
    Luenberger, D.G.: An introduction to observers. IEEE Trans. Automat. Contr. 16(6), 96–602 (1971)MathSciNetCrossRefGoogle Scholar
  12. 148.
    Patel, N., Edwards, C., Spurgeon, S.K.: Tyre/road friction estimation - a comparative study. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 22, 2337–2351 (2008)CrossRefGoogle Scholar
  13. 172.
    Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. Trans. ASME: J. Dyn. Syst. Meas. Control 109, 245–252 (1987)MATHGoogle Scholar
  14. 174.
    Spurgeon, S.: Sliding mode observers - a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)MATHMathSciNetCrossRefGoogle Scholar
  15. 175.
    Steinberg, A., Corless, M.J.: Output feedback stabilisation of uncertain dynamical systems. IEEE Trans. Automat. Contr. 30(10), 1025–1027 (1985)MATHMathSciNetCrossRefGoogle Scholar
  16. 178.
    Tan, C.P. Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust. Nonlin. 13, 443–463 (2003)MATHMathSciNetCrossRefGoogle Scholar
  17. 179.
    Tan, C.P. Edwards, C.: Robust fault reconstruction in linear uncertain systems using multiple sliding mode observers in cascade. IEEE Trans. Automat. Contr. 55, 855–867 (2010)MathSciNetCrossRefGoogle Scholar
  18. 182.
    Utkin, V.I.: Sliding Modes in Optimization and Control Problems. Springer, New York (1992)CrossRefGoogle Scholar
  19. 188.
    Walcott, B.L., Zak, S.H.: State observation of nonlinear uncertain dynamical systems. IEEE Trans. Automat. Contr. 32(2), 166–170 (1987)MATHMathSciNetCrossRefGoogle Scholar
  20. 189.
    Walcott, B.L., Corless, M.J., Zak, S.H.: Comparative study of nonlinear state observation techniques. Int. J. Control 45(6), 2109–2132 (1987)MATHMathSciNetCrossRefGoogle Scholar
  21. 193.
    Yan, X.G., Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuri Shtessel
    • 1
  • Christopher Edwards
    • 2
  • Leonid Fridman
    • 3
  • Arie Levant
    • 4
  1. 1.Department of Electrical and Computer EngineeringUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.College of Engineering, Mathematics and Physical ScienceUniversity of ExeterExeterUK
  3. 3.Department of Control Division of Electrical EngineeringFaculty of Engineering National Autonomous University of MexicoFederal DistrictMexico
  4. 4.Department of Applied Mathematics School of Mathematical SciencesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations