Skip to main content

Concentration of the Integral Norm of Idempotents

  • Chapter
  • First Online:
Recent Developments in Fractals and Related Fields

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Summary

This chapter is a companion of a recent paper, entitled Integral concentration of idempotent trigonometric polynomials with gaps. New results of the present work concern L 1 concentration, while the above-mentioned paper deals with L p concentration. Our aim here is twofold. First we try to explain methods and results, and give further straightforward corollaries. On the other hand, we also push forward the methods to obtain a better constant for the possible concentration (in the L 1 norm) of an idempotent on an arbitrary symmetric measurable set of positive measure. We prove a rather high level γ1 > 0. 96, which contradicts strongly the conjecture of Anderson et al. that there is no positive concentration in the L 1 norm. The same problem is considered on the group \(\mathbb{Z}/q\mathbb{Z}\), with q, say, a prime number. There, the property of absolute integral concentration of idempotent polynomials fails, which is in a way a positive answer to the conjecture mentioned above. Our proof uses recent results of B. Green and S. Konyagin on the Littlewood problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B., Ash, J. M., Jones, R. L., Rider, D. G. and Saffari, B., L p-norm local estimates for exponential sums, C. R. Acad. Sci. Paris Ser. I. Math., 330 (2000), 765–769.

    MATH  MathSciNet  Google Scholar 

  2. Anderson, B., Ash, J. M., Jones, R. L., Rider, D. G. and Saffari, B., Ann. Inst. Fourier, 57 (2007), 1377–1404.

    MATH  MathSciNet  Google Scholar 

  3. Ash, J. M., Jones, R. L. and Saffari, B., Inégalités sur des sommes d’exponentielles, C. R. Acad. Sci. Paris Ser. I. Math., 296 (1983), 899–902.

    MATH  MathSciNet  Google Scholar 

  4. Bonami, A. and Révész, Sz., Integral concentration of idempotent trigonometric polynomials with gaps, Am. J. Math., 131 (2009), 1065–1108.

    Article  MATH  Google Scholar 

  5. Bonami, A. and Révész, Sz. Gy., Failure of Wiener’s property for positive definite periodic functions, C. R. Acad. Sci. Paris Ser. I., 346 (2008), 39–44.

    MATH  Google Scholar 

  6. Déchamps-Gondim, M., Lust-Piquard, F. and Queffélec, H., Estimations locales de sommes d’exponentielles, C. R. Acad. Sci. Paris Ser. I. Math., 297 (1983), 153–157.

    MATH  MathSciNet  Google Scholar 

  7. Déchamps-Gondim, M., Lust-Piquard, F. and Queffélec, H., Estimations locales de sommes d’exponentielles, Publ. Math. Orsay 84-01, No. 1 (1984), 1–16.

    Google Scholar 

  8. Green, B. and Konyagin, S., On the Littlewood problem modulo a prime, Can. J. Math. 61 (2009), 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  9. Mockenhaupt, G. and Schlag, W., On the Hardy-Littlewood majorant problem for random sets, arXive:math.CA/0207226v1, for a new version see http://www-math-analysis.ku-eichstaett.de/gerdm/wilhelm/maj.pdf. J. Funct. Anal. 256 (2009), no. 4, 1189–1237.

    Google Scholar 

  10. Montgomery, H. L., Ten lectures on the interface of number theory and Fourier analysis, CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence, RI, (1994).

    Google Scholar 

  11. Sanders, T., The Littlewood-Gowers problem, J. Anal. Math., 101 (2007), 123–162.

    Article  MATH  MathSciNet  Google Scholar 

  12. Schmidt, W. M., Metrical theorems on fractional parts of sequences, Trans. Am. Math. Soc. 110 (1964), 493–518.

    MATH  Google Scholar 

  13. Szüsz, P., Über metrische Theorie der Diophantischen Approximation, Acta Math. Hung. IX, No. 1-2 (1958), 177–193.

    Google Scholar 

Download references

Acknowledgements

The Szilárd Gy. Révész was supported in part by the Hungarian National Foundation for Scientific Research, Project Nos. T-049301, K-61908, and K-72731, and also by the European Research Council, Project ERC-AdG No. 228005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Bonami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonami, A., Révész, S.G. (2010). Concentration of the Integral Norm of Idempotents. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4888-6_8

Download citation

Publish with us

Policies and ethics