A Walk from Multifractal Analysis to Functional Analysis with \({\mathcal{S}}^{\nu }\) Spaces, and Back

  • Jean-Marie Aubry
  • Françoise Bastin
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


With the With the \({\mathcal{S}}^{\nu }\) spaces introduced by Jaffard in the context of multifractal analysis to extend the Besov spaces environment, functional analysis received a gift from concrete applications. These spaces led to new results in multifractal analysis, but also brought concrete objects to study as new examples by the typical various tools and aspects of functional analysis, in the hope of providing some new points of view from which to consider multifractal analysis questions.


Besov Space Topological Vector Space Multifractal Analysis Schwartz Space Maximal Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry, J.-M., and Bastin, F. Advanced topology on the multiscale sequence spaces S ν. J. Math. Anal. Appl. 350 (2009), 439–454.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aubry, J.-M., and Bastin, F. Diametral dimension of some pseudoconvex multiscale spaces. Studia Math. 197 (2010), 27–42.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aubry, J.-M., Bastin, F., and Dispa, S. Prevalence of multifractal functions in S ν spaces. J. Fourier Anal. Appl. 13, 2 (2007), 175–185.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aubry, J.-M., Bastin, F., Dispa, S., and Jaffard, S. Topological properties of the sequence spaces S ν. J. Math. Anal. Appl. 321, 1 (2006), 364–387.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aubry, J.-M., and Jaffard, S. Random wavelet series. Comm. Math. Phys. 227, 3 (2002), 483–514.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Christensen, J. P. R. On sets of Haar measure zero in Abelian Polish groups. Israel J. Math. 13 (1972), 255–260.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fraysse, A. Generic validity of the multifractal formalism. SIAM J. Math. Anal. 39, 2 (2007), 593–607.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hunt, B. R., Sauer, T., and Yorke, J. A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27, 2 (1992), 217–238.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hunt, B. R., Sauer, T., and Yorke, J. A. Prevalence: an addendum. Bull. Amer. Math. Soc. (N.S.) 28, 2 (1993), 306–307.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jaffard, S. Multifractal formalism for functions Part I: results valid for all functions. SIAM J. Math. Anal. 28, 4 (1997), 944–970.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jaffard, S. On lacunary wavelet series. Ann. Appl. Probab. 10, 1 (2000), 313–329.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jaffard, S. On the Frisch-Parisi conjecture. J. Math. Pures Appl. (9) 79, 6 (2000), 525–552.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jaffard, S. Beyond Besov spaces, part I: Distributions of wavelet coefficients. J. Fourier Anal. Appl. 10, 3 (2004), 221–246.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jarchow, H. Locally Convex Spaces. Teubner, Stuttgart, (1981).MATHGoogle Scholar
  15. 15.
    Kahane, J.-P. Propriétés prévalentes, versus génériques, des images continues. Bull. Sci. Math. 130, 2 (2006), 97–109.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ligaud, J. P. Sur les différentes définitions d’un espace nucléaire non localement convexe. Studia Math. 48 (1973), 257–269.MathSciNetGoogle Scholar
  17. 17.
    Ligaud, J. P. Sur les rapports de convexité des topologies et bornologies dans les espaces nucléaires. Studia Math. 45 (1973), 181–190.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050Université Paris-EstCréteilFrance
  2. 2.Département de Mathématique (B37)Université de LiègeLiègeBelgique

Personalised recommendations