Geometric Measures for Fractals

  • Steffen Winter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this survey article, we review the concept of fractal curvatures and fractal curvature measures and discuss some of the results known for self-similar sets. We emphasize in particular the close relations to the Minkowski content.


Convex Body Curvature Measure Limit Measure Geometric Measure Total Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falconer, K. J.: On the Minkowski measurability of fractals. Proc. Am. Math. Soc. 123, no. 4, 1115–1124 (1995)MATHMathSciNetGoogle Scholar
  2. 2.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)MATHMathSciNetGoogle Scholar
  3. 3.
    Gatzouras, D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Am. Math. Soc. 352, no. 5, 1953–1983 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kombrink, S.: Krümmungsmaße für konforme fraktale Mengen. Diploma thesis, Univ. Göttingen, Germany (2008)Google Scholar
  5. 5.
    Lapidus, M. L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture. In: Ordinary and Partial Differential Equations, Vol. IV (Dundee, 1992). Longman Scientific Technical Harlow (1993)Google Scholar
  6. 6.
    Lapidus, M. L., Pearse, E. P. J.: Tube formulas and complex dimensions of self-similar tilings. Acta Appl. Math. (in press) (preprint arXiv:math/0605527)Google Scholar
  7. 7.
    Lapidus, M. L., Pearse, E. P. J.: Tube formulas of self-similar fractals. In: Analysis on Graphs and Its Applications. American Mathematical Society Providence, RI (2008)Google Scholar
  8. 8.
    Lapidus, M. L., Pearse, E. P. J., Winter, S.: Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators (in preparation)Google Scholar
  9. 9.
    Mandelbrot, B. B.: Measures of fractal lacunarity: Minkowski content and alternatives. In: Fractal Geometry and Stochastics I. Birkhäuser, Basel (1995)Google Scholar
  10. 10.
    Pearse, E. P. J., Winter, S.: Geometry of canonical self-similar tilings. Rocky Mountain J. Math. (in press) (preprint arXiv:0811.2187v1)Google Scholar
  11. 11.
    Rataj, J., Winter, S.: On volume and surface area of parallel sets. Indiana Univ. Math. J. (in press) (preprint
  12. 12.
    Rothe, T.: Curvature-direction measures on self-similar fractals. Diploma thesis, Univ. Jena, Germany (2008)Google Scholar
  13. 13.
    Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122, no. 1, 111–115 (1994)MATHMathSciNetGoogle Scholar
  14. 14.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge, UK (1993)MATHCrossRefGoogle Scholar
  15. 15.
    Spodarev, E., Straka, P., Winter, S.: Estimation of fractal dimension and fractal curvatures from digital images (in preparation)Google Scholar
  16. 16.
    Straka, P.: Fractal curvature measures and image analysis. Diploma thesis, Univ. Ulm, Germany (2008)Google Scholar
  17. 17.
    Winter, S.: Curvature measures and fractals. Diss. Math. 453, 1–66 (2008)MathSciNetGoogle Scholar
  18. 18.
    Zähle, M.: Lipschitz-Killing curvatures of self-similar random fractals. Trans. Amer. Math. Soc. (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut für Algebra und GeometrieUniversität KarlsruheKarlsruheGermany

Personalised recommendations