A Crash Look into Applications of Aperiodic Substitutive Sequences

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Applications of the theory of finite automata, automatic and substitutive sequences to the description of physical situations intermediate between crystallographic order and random disorder in theoretical and experimental Condensed Matter Physics are described. Particular reference is made to Trace Mapping techniques, experimental applications include the investigation of multilayer heterostructures designed after such automatic or substitutive sequences and the use of their specific properties.


Absolutely Continuous Winter School Pisot Number Substitutive Sequence Dielectric Multilayers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.Abeles, Recherche sur la propagation des ondes electromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces, Annales de Physique vol.5 (1950), 596–640 and 707–782.MathSciNetGoogle Scholar
  2. 2.
    J.-P.Allouche, J.Peyrière, Sur une formule de récurrence sur les traces de produits de matrices associés certaines substitutions, C.R.Acad.Sc.Paris, t.302, Série II, (1986)18, 1135.Google Scholar
  3. 3.
    Y.Avishai, D.Berend, Trace maps for arbitrary substitution sequences, J.Phys.A Math.Gen.26 (1993) 2437–2443.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    F.Axel, J.P.Allouche, M.Kléman, M.Mendès France, J.Peyrière, Vibrational modes in a one dimensional “quasi alloy”: the Morse case, J. Phys. (Paris) 47, C3 (1986) 181–186.Google Scholar
  5. 5.
    F.Axel, J.P.Allouche, Z.Y.Wen, On certain properties of high resolution X ray diffraction spectra of finite size generalized Rudin-Shapiro multilayer heterostructures, J. Phys.Cond.Matter.4 (1992) 8713–8728.CrossRefGoogle Scholar
  6. 6.
    F.Axel, F.Dénoyer, J.P.Gazeau, “From Quasicrystals to more complex systems,” Courses of the Winter School Order, Chance and Risk, F.Axel, F.Dénoyer, and J.P.Gazeau, Editors, 374 p., with a glossary, Les Editions de Physique/Springer-Verlag, (2000).Google Scholar
  7. 7.
    F.Axel, D.Gratias, “Beyond Quasicrystals”, Courses of the Winter School “Beyond Quasicrystals”, F.Axel and D.Gratias, Editors, with a glossary, 630p., Les Editions de Physique/Springer-Verlag, (1995).Google Scholar
  8. 8.
    F.Axel, J.Peyrière, Etats étendus dans une chaîne à désordre contrôlé, C.R.Acad.Sc.Paris, t. 306, Série II, (1988), 179–182.Google Scholar
  9. 9.
    F.Axel, J.Peyrière, Spectrum and extended states in a harmonic chain with controlled disorder: effects of the Thue-Morse symmetry, J.Stat.Phys.57 (1989) 1013–1047.MATHCrossRefGoogle Scholar
  10. 10.
    F.Axel, H.Terauchi, High resolution X ray diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: towards a novel description of disorder, Phys.Rev.Lett.66 (1991) 2223 and Reply Phys.Rev.Lett.73 (1994) 1308–1311.Google Scholar
  11. 11.
    E.Bombieri, J.Taylor, Which distributions of matter diffract? J. Phys., C3, 47 (1986) 19.MathSciNetGoogle Scholar
  12. 12.
    Z.Cheng, R.Savit, R.Merlin, Structure and electronic properties of Thue-Morse lattices, Phys.Rev.B37 (1988) 4375.Google Scholar
  13. 13.
    G.Christol, T.Kamae, M.Mendès France, G.Rauzy, Suites algébriques, automates et substitutions, Bull.Soc.Math.Fr.108 (1980) 401–419 and Course 11 in[7].MATHGoogle Scholar
  14. 14.
    L.Dal Negro, C.J.Oton, Z.Gaburro, L.Pavesi, P.Johnson, A.Lagendijk, R.Righini, M.Colocci, D.S.Wiersma, Light transport through the band-edge states of Fibonacci quasicrystals, Phys.Rev.Lett.90 (2003) 55501.CrossRefGoogle Scholar
  15. 15.
    R.Fricke, F.Klein, Vorlesungen über die Theorie des Automorphen Functionen, B.G.Teubner, Leipzig (1897).Google Scholar
  16. 16.
    W.Gellerman, M.Kohmoto, B.Sutherland, P.C.Taylor, Localization of light waves in Fibonacci dielectric multilayers, Phys.Rev.Lett.72 (1994) 633.CrossRefGoogle Scholar
  17. 17.
    C.Godrèche, J.M.Luck, F.Vallet, Quasiperiodicity and types of order; a study in one dimension, J.Phys.A Math.Gen.20 (1987) 4483–4499.CrossRefGoogle Scholar
  18. 18.
    D.Gratias, L.Michel, “Aperiodic Crystals,” Proceedings of the Workshop in les Houches (March 11–20, 1986) D.Gratias and Louis Michel, Editors, J. Phys. (Paris) 47, C3 (1986).Google Scholar
  19. 19.
    R.D.Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm.Pure and Applied Math.XXV (1972) 635–649CrossRefMathSciNetGoogle Scholar
  20. 20.
    R.D.Horowitz, Induced automorphism on Fricke characters of free groups, Trans.Am.Math.Soc.208 (1975) 41–50.MATHMathSciNetGoogle Scholar
  21. 21.
    A.Hu, Z.X.Wen, S.S.Jiang, W.T.Tong, R.-W.Peng, D.Feng, One-dimensional k-component Fibonacci structures, Phys.Rev.B48 (1993), 829.Google Scholar
  22. 22.
    M.Kohmoto, L.P.Kadanoff, C.Tang, Localization problem in one dimension: mapping and escape, Phys.Rev.Lett.50 (1983), 1870.CrossRefMathSciNetGoogle Scholar
  23. 23.
    M.Kohmoto, B.Sutherland, K.Iguchi, Localization in optics: quasiperiodic media, Phys.Rev.Lett.58 (1987), 2436.CrossRefGoogle Scholar
  24. 24.
    H.Kunz, Quantized currents and topological invariants for electrons in incommensurate potentials, Phys.Rev.Lett.57 (1986), 1095.CrossRefMathSciNetGoogle Scholar
  25. 25.
    B.Leblanc, E.Lutton, F.Axel, Genetic algorithms as a tool in the study of aperiodic order with application to the case of X-ray diffraction spectra of GaAs-AlAs multilayer heterostructures, Euro.Phys.J.B29 (2002) 619–628.Google Scholar
  26. 26.
    N.-H.Liu, Propagation of light waves in Thue-Morse dielectric multilayers, Phys.Rev.B55 (1997), 3543.Google Scholar
  27. 27.
    Y.Liu, R.Riklund, Electronic properties of perfect and non-perfect one-dimensional quasicrystals, Phys.Rev.B35 (1987), 6034.Google Scholar
  28. 28.
    R.Merlin, K.Bajema, R.Clarke, F.Y.Juang, P.K.Bhattacharya, Quasiperiodic GaAl-AlAs heterostructures, Phys.Rev.Lett.55 (1985), 1768.CrossRefGoogle Scholar
  29. 29.
    R.Merlin, K.Bajema, J.Nagle, K.Ploog, Raman scattering by acoustic phonons and structural properties of Fibonacci, Thue-Morse and random superlattices, J.Phys.(Paris) Colloq 48 (1987) C5 503–506.Google Scholar
  30. 30.
    L.Moretti, I.Rea, L.Rotiroti, I.Rendina, G.Abbate, A.Marino, L.De Stefano, Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon, Opt. Express 14 (2006), 6264.CrossRefGoogle Scholar
  31. 31.
    M.Morse, Recurrent geodesics on a surface of negative curvature, Trans.Am.Math.Soc.2 (1921) 84–100.MathSciNetGoogle Scholar
  32. 32.
    S.Ostlund, R.Pandit, Renormalization-group analysis of the discrete quasiperiodic Schrödinger equation, Phys.Rev.B29 (1984), 1394.MathSciNetGoogle Scholar
  33. 33.
    S.Ostlund, R.Pandit.D.Rand, H.-J.Schellnhuber, E.Siggia, One-dimensional Schrödinger equation with an almost periodic potential, Phys.Rev.Lett.50 (1983) 1873.CrossRefMathSciNetGoogle Scholar
  34. 34.
    J.Peyrière, On the trace map for products of matrices associated with substitutive sequences, J.Stat.Phys. 62 (1991) 411–414, see also Course 16 in[7].Google Scholar
  35. 35.
    J.Peyrière, E.Cockayne, F.Axel, Line-shape analysis of high resolution X-ray diffraction spectra of finite size Thue-Morse GaAs-AlAs multilayer heterostructures, J.Phys. I Fr., 5 (1995), 111–127.CrossRefGoogle Scholar
  36. 36.
    J.Peyrière, Z.-Y.Wen, Z.-X.Wen, Polynômes associés aux endomorphismes de groupes libres, L’Enseignement Mathématique, vol 39, (1993).MATHGoogle Scholar
  37. 37.
    E.Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C.R.Acad.Sci.Paris 33 (1851) 225.Google Scholar
  38. 38.
    Lord Rayleigh, On the propagation of waves through a stratified medium, with special reference to the question of reflection, Proc.Roy.Soc.(1912), 86A, 207–226.Google Scholar
  39. 39.
    R.Riklund, M.Severin, Optical properties of perfect and non-perfect quasi-periodic multilayers: a comparison with periodic and disordered multilayers, J.Phys.C Solid State Phys.21 (1988), 3217.CrossRefGoogle Scholar
  40. 40.
    C.S.Ryu, G.Y.Oh, M.H.Lee, Electronic properties of a tight-binding and a Kronig-Penney model of the Thue-Morse chain, Phys.Rev.B48 (1993), 132.Google Scholar
  41. 41.
    D.Shechtman, I.Blech, D.Gratias, J.W.Cahn, Metallic phases with long range orientational order and no translational symmetry, Phys.Rev.Lett.53 (1984) 1951–1953.CrossRefGoogle Scholar
  42. 42.
    H.Terauchi et al., Xray studies of semiconductor superlattices grown by MBE, Xray diffraction pattrens of configurational Fibonacci lattices and Synchrotron Xray diffraction study of third-order Fibonacci lattices, J.Phys.Soc.Jpn.54 (1985) 4576, 57 (1988) 2416, 59 (1990), 405.Google Scholar
  43. 43.
    A.Thue, Uber unendliche Zeichenreihen, Norske vid.Selsk.Skr.I.Mat.Kl.Christiania 7 (1906) 1–22, 13 (1912) 1–67.Google Scholar
  44. 44.
    J.Todd, R.Merlin, R.Clarke, K.M.Mohanty, J.D.Axe, Synchrotron X-ray study of a Fibonacci superlattice, Phys.Rev.Lett.57 (1986) 1157.CrossRefGoogle Scholar
  45. 45.
    Z.Wang, R.W.Peng, F.Qiu, Z.H.Tang, X.F.Hu, X.Q.Huang, M.Wang, A.Hu, S.S.Jiang, D.Feng, Structural fabrication and defect-dependent optical transmission of dielectric multilayers, J.Cryst. Growth 275 (2005) 209.CrossRefGoogle Scholar
  46. 46.
    Z.-X.Wen, Relations polynomiales entre les traces de produits de matrices, C.R.Acad.Sc.Paris, t.318, Série I, (1994) 99–104.Google Scholar
  47. 47.
    Z.-X.Wen, Z.-Y.Wen, On the leading term and the degree of the polynomial trace mapping associated with a substitution, J.Stat.Phys.75 (1994), 627–641.MATHCrossRefGoogle Scholar
  48. 48.
    Z.-Y.Wen, F.Wijnands, J.S.W.Lamb, A natural class of generalized Fibonacci chains, J.Phys.A Math.Gen.27 (1994), 3689.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    P.Yeh, A.Yariv, C.-S.Hong, Electromagnetic propagation in stratified media; I General theory; II Birefringence, phase matching and X-ray lasers, J.Opt. Soc.Am.67 (1977), 423–438, 438–448.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire de Physique des SolidesUniversité Paris-Sud et CNRS-UMR 8502OrsayFrance

Personalised recommendations