Skip to main content

A Process Very Similar to Multifractional Brownian Motion

  • Chapter
  • First Online:
Recent Developments in Fractals and Related Fields

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Summary

Multifractional Brownian motion (mBm), denoted here by X, is one of the paradigmatic examples of a continuous Gaussian process whose pointwise Hölder exponent depends on the location. Recall that X can be obtained (see, e.g., Ayache and Taqqu Publ Mat 49:459–486,2005; Benassi et al. Rev Mat Iberoam 13:19–81, 1997) by replacing the constant Hurst parameter H in the standard wavelet series representation of fractional Brownian motion (fBm) by a smooth function H( ⋅) depending on the time variable t. Another natural idea (see Benassi et al. Stat Infer Stoch Proc 3:101–111, 2000) which allows us to construct a continuous Gaussian process, denoted by Z, whose pointwise Hölder exponent does not remain constant all along its trajectory, consists in substituting H(k ∕ 2j) to H in each term of index (j, k) of the standard wavelet series representation of fBm. The main goal of our chapter is to show that, under some assumption on the bounds of H( ⋅), X and Z only differ by a process R which is smoother than they are; this means that they are very similar from a fractal geometry point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayache, A., Bertrand, P. R., A process very similar to multifractional Brownian motion, arXiv:0901.2808v2 (2009)

    Google Scholar 

  2. Ayache, A., Bertrand, P. R., Lévy Véhel, J.: A central limit theorem for the generalized quadratic variation of the step fractional Brownian motion. Stat. Infer. Stoch. Process., 10, 1, 1–27 (2007)

    Google Scholar 

  3. Ayache, A., Jaffard, S., Taqqu, M.S.: Wavelet construction of generalized multifractional processes. Rev. Mat. Iberoam., 23, 1, 327–370 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Ayache, A., Taqqu, M.S.: Rate optimality of wavelet series approximations of fractional Brownian motion. J. Fourier Anal. Appl., 9(5), 451–471 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ayache, A., Taqqu, M.S.: Multifractional process with random exponent. Publ. Mat., 49, 459–486 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Benassi, A., Bertrand, P. R., Cohen, S., Istas, J.: Identification of the Hurst index of a step fractional Brownian motion. Stat. Infer. Stoch. Proc., 3, 1/2, 101–111 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benassi, A., Cohen, S., Istas, J.: Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett., 39, 337–345 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benassi, A., Jaffard, S., Roux, D.: Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13, 1, 19–81 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  10. Cohen, S.: From self-similarity to local self-similarity: the estimation problem. Fractals: Theory and Applications in Engineering, eds. Dekind, Lévy Véhel, Lutton, and Tricot, 3–16, New York (1999)

    Google Scholar 

  11. Falconer, K.J.: Tangent fields and the local structure of random fields. J. Theoret. Probab., 15, 731–750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Falconer, K.J.: The local structure of random processes. J. Lond. Math. Soc. (2) 67, 657–672 (2003)

    Google Scholar 

  13. Falconer, K.J., Le Guével, R., Lévy Véhel, J.: Localisable moving average symmetric stable and multistable processes. Stochastic Models, 25(4), 101–129, 2009

    Google Scholar 

  14. Lemarié, P.G., Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam., 2, 1–18 (1986)

    Google Scholar 

  15. Meyer, Y., Sellan, F., Taqqu, M.S.: Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl., 5(5), 465–494 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peltier, R.F., Lévy Véhel, J.: Multifractional brownian motion: definition and preliminary results. Rapport de recherche de l’INRIA, 2645, (1995)

    Google Scholar 

  17. Stoev, S., Taqqu, M.S.: How rich is the class of multifractional Brownian motions? Stochastic Process. Appl., 116, 200–221 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Surgailis, D.: Nonhomogeneous fractional integration and multifractional processes. Stochastic Process. Appl., 118, 2, 171–198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Ayache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ayache, A., Bertrand, P.R. (2010). A Process Very Similar to Multifractional Brownian Motion. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4888-6_20

Download citation

Publish with us

Policies and ethics