Space-Filling Functions and Davenport Series

  • Stéphane Jaffard
  • Samuel Nicolay
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this paper, we study the pointwise Hölder regularity of some spacefilling functions. In particular, we give some general results concerning the pointwise regularity of the Davenport series.


Wireless Sensor Network Binary Sequence Multifractal Formalism Regularity Index Lebesgue Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bousch, T., Heurteaux, Y.: Caloric measure on domains bounded by Weierstrass-type graphs. Ann. Acad. Sci. Fenn., 25:2, 501–522 (2000)MATHMathSciNetGoogle Scholar
  2. 2.
    Cantor, G.: Ein Beitrag zur Mannigfaltigkeitslehre. J. Reine Angew. Math., 8, 242–258 (1878)Google Scholar
  3. 3.
    Clausel, M., Nicolay, S.: Wavelets techniques for pointwise anti-Hölderian irregularity. To appear in Const. Approx. (2010)Google Scholar
  4. 4.
    Falconer, K.: Fractal Geometry: Mathematical Foundation and Applications. Wiley, Chichester (1990)Google Scholar
  5. 5.
    Fleron, J.: A note on the history of the Cantor set and Cantor function. Math. Mag., 67, 136–140 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jaffard, S.: Multifractal formalism for functions part I and II. SIAM, 28, 945–998 (1997)Google Scholar
  7. 7.
    Jaffard, S.: On Davenport expansions. Proc. Symp. Pure Math., 72, 273–303 (2004)MathSciNetGoogle Scholar
  8. 8.
    Jaffard, S., Nicolay, S.: Pointwise smoothness of space-filling functions. Appl. Comput. Harmon. Anal., 26, 181–199 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jaffard, S., Nicolay, S.: On the Hölder exponent of some historical functions. Preprint (2008)Google Scholar
  10. 10.
    Lebesgue, H.: Leçons sur l’intégration et la recherche de fonctions primitives. Gautiers-Villars, Paris (1904)MATHGoogle Scholar
  11. 11.
    Mandelbrot, B., Jaffard, S.: Peano-Pólya motions, when time is intrinsic or binomial (uniform or multifractal). Math. Intellig., 19, 21–26 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Morayne, M.: On differentiability of Peano-type functions. I, II. Colloq. Math., 53, 129–132, 133–135 (1987)MATHMathSciNetGoogle Scholar
  13. 13.
    Patil, S., Das, S., Nasipuri, A.: Serial Data Fusion Using Space-Filling Curves in Wireless Sensor Networks. Proc. IEEE Conf. SECON, Santa Clara, CA (2005)Google Scholar
  14. 14.
    Peano, P.: Sur une courbe, qui remplit toute une aire plane. Math. Annal., 36, 157–160 (1890)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Quinqueton, J., Berthod, M.: A locally adaptative Peano scanning algorithm. IEEE Trans. Patt. Anal Mach. Intell., 3, 403–412 (1981)MATHCrossRefGoogle Scholar
  16. 16.
    Sagan, H.: Space Filling Curves. Springer, New York (1994)MATHGoogle Scholar
  17. 17.
    Schoenberg, I.J.: The Peano curve of Lebesgue. Bull. AMS, 44, 519 (1938)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Université Paris EstParisFrance
  2. 2.Universitè de LiègeLiègeBelgium

Personalised recommendations