Some Remarks on the Hausdorff and Spectral Dimension of V-Variable Nested Fractals

  • Uta Renata Freiberg
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


New families of random fractals, referred to as V-variable fractals (developed by Barnsley, Hutchinson, and Stenflo), are presented. In order to define and investigate a Laplacian and a Brownian motion–or, equivalently– a Dirichlet form on them, we introduce the class of V-variable nested fractals. These are nested fractals over families of iterated function systems with nested attractors and a uniform set of essential fixed points. So, the underlying graphs in the construction steps form sequences of comparable resistance networks. Dirichlet forms are defined ω-wise in a canonical way. In a survey style, we explain how to get Hausdorff and spectral dimension of such fractals by applying results of Furstenberg and Kesten on limits of products of random matrices.


Brownian Motion Dirichlet Form Iterate Function System Variable Fractal Sierpinski Gasket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, M. and Hambly, B. (1997) Transition density estimates for Brownian motion for scale irregular Sierpinski gaskets. Ann. Inst. Henri Poincaré 33 no. 5, 531–557MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barnsley, M., Hutchinson, J. and Stenflo, Ö. (2005) A fractals valued random iteration algorithm and fractal hierarchy. Fractals 13, 111–146CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barnsley, M., Hutchinson, J. and Stenflo, Ö. (2008) V-variable fractals: Fractals with partial self similarity. Adv. Math. 218, 2051–2088MATHMathSciNetGoogle Scholar
  4. 4.
    Barnsley, M., Hutchinson, J. and Stenflo, Ö. (2008) V-variable fractals: Dimension results. Forum Mathematicum (to appear)Google Scholar
  5. 5.
    Falconer, K.J. (1986) Random fractals. Math. Proc. Camb. Philos. Soc. 100, 559–582MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freiberg, U. (2005) Analysis on fractal objects. Meccanica 40, 419–436MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freiberg, U. (2009) Einstein relation on fractal objects. submittedGoogle Scholar
  8. 8.
    Freiberg, U. (2009) Tailored V-variable models. Stereology and Image Analysis. Ecs10: Proceedings of the 10th European Congress of ISS, (V.Capasso et al. Eds.), The MIRIAM Project Series, Vol. 4, ESCULAPIO Pub. Co., Bologna, Italy, 2009Google Scholar
  9. 9.
    Freiberg, U.R., Hambly, B.M. and Hutchinson, J.E. (2010) Spectral asymptotics for V-variable Sierpinski Gaskets. preprintGoogle Scholar
  10. 10.
    Freiberg, U. and Thäle, C. (2008) A Markov chain algorithm in determining crossing times through nested graphs. Discrete Math. Theor. Comput. Sci. 505–522Google Scholar
  11. 11.
    Furstenberg, H. and Kesten, H. (1960) Products of random matrices. Ann. Math. Stat. 31, 457–469MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hambly, B. (1992) Brownian motion on a homogeneous random fractal. Probab. Theory Rel. Fields 94, 1–38MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hambly, B. (1997) Brownian motion on a random recursive Sierpinski gasket. Ann. Prob. 25, no. 3, 1059–1102MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hambly, B. (1999) Heat kernels and spectral asymptotics for some random Sierpinski gaskets. preprintGoogle Scholar
  15. 15.
    Hambly, B. (2000) On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets. Probab. Theory Rel. Fields 117, 221–247MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hutchinson, J.E. (1981) Fractals and self-similarity. Indiana. Univ. Math. J. 30, 713–749MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kifer, Y. (1995) Fractals via random iterated function systems and random geometric constructions. Fractal Geometry and Stochastics (Finsterbergen, 1994), Progr. Probab. 37, 145–164Google Scholar
  18. 18.
    Kigami, J. (1994) Effective resistances for harmonic structures on p.c.f. self similar sets. Math. Proc. Camb. Phil. Soc. 115, 291–303MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kigami, J. (2001) Analysis on Fractals. Cambridge Univeristy Press, Cambridge, UKMATHCrossRefGoogle Scholar
  20. 20.
    Kigami, J. and Lapidus, M. L. (1993) Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Commun. Math. Phys. 158, 93–125MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kusuoka, S. Diffusion processes on nested fractals. Lecture Notes in Math. 1567, Springer, 1993Google Scholar
  22. 22.
    Lindstrøm, T. (1990) Brownian motion on nested fractals. Mem. Am. Math. Soc. 420Google Scholar
  23. 23.
    Mauldin, R.D. and Williams, S.C. (1986) Random recursive constructions: asymptotic geometrical and topological properties. Trans. Am. Math. Soc. 295, 325–346MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematisches InstitutFriedrich–Schiller–UniversitätJenaGermany

Personalised recommendations