Advertisement

Lp-Norms and Fractal Dimensions of Continuous Function Graphs

  • Yann Demichel
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Summary

We study the fractal dimensions of continuous function graphs and more general fractal parameters. They are all obtained from the L p -norms of some well-built operators. We give general results about these norms in the continuous and the discrete cases. For a function that is uniformly Hölderian, they allow us to estimate in a very easy way a large family of dimensional indices, like the box dimension and regularization dimension.

Keywords

Regularization Dimension Fractal Index Uniform Probability Determine Function Riemann Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Chamizo and A. Córdoba. The fractal dimension of a family of Riemann’s graphs. C.R. Acad. Sci. Paris. 317 (1993) 455–460.MATHGoogle Scholar
  2. 2.
    Y. Demichel. Analyse fractale d’une famille de fonctions aléatoires : les fonctions de bosses. Ph.D. Thesis. (2006).Google Scholar
  3. 3.
    Y. Demichel and K.J. Falconer. The Hausdorff dimension of pulse sum graphs. Math. Proc. Camb. Phil. Soc. 142 (2007) 145–155.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Y. Demichel and C. Tricot. Analysis of the fractal sum of pulses. Math. Proc. Camb. Phil. Soc. 141 (2006) 355–370.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Dubuc and C. Tricot. Variation d’une fonction et dimension de son graphe. C.R. Acad. Sci. Paris. 306 (1988) 531–533.MATHMathSciNetGoogle Scholar
  6. 6.
    K.J. Falconer. Fractal Geometry, Mathematical Foundations and Applications. second edition (Wiley, New York, 2003).MATHCrossRefGoogle Scholar
  7. 7.
    G.H. Hardy. Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17 (1916) 301–325.MATHMathSciNetGoogle Scholar
  8. 8.
    Y. Heurteaux. Weierstrass functions with random phases. Trans. Am. Math. Soc. 355 (2003) 3065–3077.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Istas and G. Lang. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré, Prob. Stat. 33(4) (1997) 407–436.CrossRefMathSciNetGoogle Scholar
  10. 10.
    S. Jaffard. The spectrum of singularities of Riemann’s function. Rev. Mat. Iber. 12 (1996) 441–460.MATHMathSciNetGoogle Scholar
  11. 11.
    S. Jaffard. Multifractal formalism for functions. SIAM J. Math. Anal. 24 (1997) 944–970.CrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Jaffard. Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3-1 (1997) 1–22.CrossRefMathSciNetGoogle Scholar
  13. 13.
    F. Roueff and J. Lévy Véhel. A regularization approach to fractional dimension estimation. Proc. Fractals’ 98, Malta (1998).Google Scholar
  14. 14.
    C. Tricot. Function norms and fractal dimension. SIAM J. Math. Anal. 28 (1997) 189–212.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Tricot. Courbes et dimension fractale. Seconde édition (Springer, Berlin, 1999).MATHGoogle Scholar
  16. 16.
    K. Weierstrass. On continuous functions of a real argument that do not have a well-defined differential quotient. Mathematische Werke, Vol. II, (Mayer and Müller, Berlin, 1895) 71–74.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.MAP5 - Laboratoire de Mathématiques Appliquées, Bureau 725C1Université Paris DescartesParis Cedex 06France

Personalised recommendations