Skip to main content

Occupation Measure and Level Sets of the Weierstrass–Cellerier Function

  • Chapter
  • First Online:
Recent Developments in Fractals and Related Fields

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1236 Accesses

Summary

We show that the occupation measure of the Weierstrass–Cellerier function \(\mathcal{W}(x) ={ \sum \nolimits }_{n=0}^{\infty }{2}^{-n}\sin (2\pi {2}^{n}x)\) is purely singular. Using our earlier results, we can deduce from this that almost every level set of \(\mathcal{W}(x)\) is finite. These previous results and Besicovitch’s projection theorem imply that for almost every c the occupation measure of \(\mathcal{W}(x,c) = \mathcal{W}(x) + cx\) is purely singular. In this chapter we verify that this result holds for all c, especially for c = 0. As happens quite often, it is not that easy to obtain from an almost everywhere true statement one that holds everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, 50 American Mathematical Society, Providence, RI (1997).

    MATH  Google Scholar 

  2. G. Atkinson, Recurrence of co-cycles and random walks, J. Lond. Math. Soc. (2) 13 (1976), no. 3, 486–488.

    Article  MATH  Google Scholar 

  3. J. Bertoin, Sur la mesure d’occupation d’une classe de fonctions self-affines, Jpn. J. Appl. Math. 5 no. 3 (1988), 431439.

    MathSciNet  Google Scholar 

  4. J. Bertoin, Hausdorff dimension of the level sets for self affine functions, Jpn. J. Appl. Math. 7 no. 2 (1990), 197–202.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points III, Math. Ann. 116 (1939), 349–357.

    Article  MathSciNet  Google Scholar 

  6. Z. Buczolich, Micro tangent sets of continuous functions, Math. Bohem. 128 (2003), no. 2, 147–167.

    MATH  MathSciNet  Google Scholar 

  7. Z. Buczolich, Irregular 1-sets on the graphs of continuous functions, Acta Math. Hungar., 121 (4) (2008), 371–393.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Buczolich and Cs. Ráti, Micro tangent sets of typical continuous functions, Atti. Semin. Mat. Fis. Univ. Modena ReBuczolichGGio Emilia, 54 (2006), 135–166.

    MATH  Google Scholar 

  9. K.N Falconer, The geometry of fractal sets, Cambridge University Press, Cambridge, UK (1985).

    Book  MATH  Google Scholar 

  10. A.-H. Fan and J. Schmeling, On fast Birkhoff averaging, Math. Proc. Camb. Philos. Soc. 135 (2003), no. 3, 443–467.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer, New York (1969).

    Google Scholar 

  12. D. Geman and J. Horowitz, Occupation densities, Ann. Probab. 8 (1980), no. 1, 167.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported by the Hungarian National Foundation for Scientific Research K075242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Buczolich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Buczolich, Z. (2010). Occupation Measure and Level Sets of the Weierstrass–Cellerier Function. In: Barral, J., Seuret, S. (eds) Recent Developments in Fractals and Related Fields. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4888-6_1

Download citation

Publish with us

Policies and ethics