Skip to main content

On the Depth of Modular Invariant Rings for the Groups C p × C p

  • Chapter
  • First Online:
Symmetry and Spaces

Part of the book series: Progress in Mathematics ((PM,volume 278))

Summary

Let G be a finite group, k a field of characteristic p and V a finite dimensional kG -module. Let R :=Sym(V* ), the symmetric algebra over the dual spaceV* , with G acting by graded algebra automorphisms. Then it is known that the depth of the invariant ring R G is at least min{ dim(V ), dim(VP )+cc G (R )+1} . A module V for which the depth of R G attains this lower bound was called flat by Fleischmann, Kemper and Shank [13]. In this paper some of the ideas in [13] are further developed and applied to certain representations of Cp ×Cp, generating many new examples of flat modules. We introduce the useful notion of “strongly flat” modules, classifying them for the group C 2 ×C 2, as well as determining the depth of R G for any indecomposable modular representation of C 2 ×C 2.

Mathematics Subject Classification (2000): 13A50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Adem, R. James Milgram, Cohomology of Finite Groups, Springer-Verlag, 309, (1994).

    MATH  Google Scholar 

  2. D.J.Benson, Representations and Cohomology 1, Cambridge Studies in Advanced Mathematics, 30, (1995).

    Google Scholar 

  3. D.J. Benson, Polynomial Invariants of Finite Groups, Cambridge Univ. Press, LMS Lecture Note Ser., 190, (1993).

    Google Scholar 

  4. W. Bosma, J.J. Cannon, Catherine Playoust, The MAGMA algebra system 1: The user language, J. Symbolic Computing, 24 (1997).

    Google Scholar 

  5. W. Bruns, Jürgen Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, (1997).

    Google Scholar 

  6. H. Derksen, G. Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups I, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag.

    Google Scholar 

  7. J. Eagon and M. Hochster, Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), pp 1020–1058.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Eisenbud, Commutative Algebra With A View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer-Verlag (1995).

    Google Scholar 

  9. G. Ellingsrud and T.Skjelbred, Profondeur d'anneaux d'invariants en caractéristique p, Compos. Math.. 41, (1980), pp 233–244.

    MATH  MathSciNet  Google Scholar 

  10. L. Evens, The Cohomology of Groups, Oxford Science Publications, (1991).

    MATH  Google Scholar 

  11. P. Fleischmann, Relative Trace Ideals and Cohen–Macaulay Quotients of Modular Invariant Rings in Computational Methods for Representations of Groups and Algebras, Euroconference in Essen 1997, Progress in Mathematics, 173 Birkhäuser, Basel (1999).

    Google Scholar 

  12. P. Fleischmann, On Invariant Theory Of Finite Groups, CRM Proceedings and Lecture Notes, 35, (2004), pp 43–69.

    MathSciNet  Google Scholar 

  13. P. Fleischmann, G. Kemper, R.J. Shank, Depth and Cohomological Connectivity in Modular Invariant Theory, Transactions of the American Mathematical Society, 357, (2005), pp 3605–3621.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Fleischmann and R.J. Shank, The relative trace ideal and the depth of modular rings of invariants Arch. Math., 80, (2003), pp 347–353.

    MATH  MathSciNet  Google Scholar 

  15. A. Heller and I. Reiner, Indecomposable Representations Illinois Journal of Mathematics, 5, (1961) pp 314–323.

    MATH  MathSciNet  Google Scholar 

  16. D. B. Karagueuzian, P. Symonds, The Module Structure of a Group Action on a Polynomial Ring: A Finiteness Theorem, Journal of the American Math. Society, 20, (2007), pp 931–967.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Lorenz, J. Pathak, On Cohen–Macaulay Rings of Invariants, Journal of Algebra, 245, (2001), pp 247–264.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Neusel, L. Smith, Invariant Theory of Finite Groups, AMS, Mathematical Surveys and Monographs, 94, (2002).

    Google Scholar 

  19. D.R. Richman, On vector invariants over finite fields, Advances in Mathemtatics, 81, (1990), pp 30–65.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Elmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Elmer, J., Fleischmann, P. (2010). On the Depth of Modular Invariant Rings for the Groups C p × C p . In: Campbell, H., Helminck, A., Kraft, H., Wehlau, D. (eds) Symmetry and Spaces. Progress in Mathematics, vol 278. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4875-6_4

Download citation

Publish with us

Policies and ethics