Continua with an Interface and Micromagnetism

  • Antonio Romano
  • Addolorata Marasco
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In the presence of an external magnetic field, a ferromagnetic substance1 exhibits a behavior that is quite different from the behavior of a paramagnetic body. Under the same conditions, the former shows an induced magnetization that is much greater than the corresponding magnetization exhibited by the the latter. Moreover, the functional relation between the magnetic field and the magnetization is nonlinear in a ferromagnetic body and linear in a paramagnetic one. Finally, in a ferromagnetic body the magnetization depends not only on the actual value of the magnetic field but its history (i.e., hysteresis).


Domain Wall Variational Principle Magnetization Vector Magnetic Potential Easy Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. [136]
    P. Weiss, L’hypothèse du champ moleculaire et la proprietéferromagneétique, J. Phys., 6, 661, 1907.Google Scholar
  2. [162]
    L. Graziano, D. Iannece, A. Romano, Influence of a uniform magneticfield on the Weiss domains inside a plane-parallel slab of a uniaxialcrystal; magnetization curves, ARI, 50, 96, 1997.CrossRefGoogle Scholar
  3. [143]
    E. M. Lifshitz, On the magnetic structure of iron, J. Phys. USSR, 8, 377, 1944.MathSciNetGoogle Scholar
  4. [152]
    I. Privorotskii, Thermodynamic Theory of Domain Structure, Wiley,New York, 1976.Google Scholar
  5. [142]
    L. D. Landau, E. M. Lifshits, On the theory of dispersion of magneticpermeability in ferromagnetic bodies, Phys. Z. Sowjet., 8, 153, 1935.MATHGoogle Scholar
  6. [157]
    A. Romano, E. S. Suhubi, Possible configurations for Weiss domainsin uniaxial ferroelectric crystals, Ric. Mat., 42, 149, 1993.MATHMathSciNetGoogle Scholar
  7. [163]
    L. Graziano, D. Iannece, A. Romano, A perturbative approach to domainstructure analysis in elastic cubic ferromagnetic crystals, ARI, 51, 86, 1998.CrossRefGoogle Scholar
  8. [145]
    L. D. Landau, E. M. Lifshitz, Electrodynamics of continuous media,Addison–Wesley, Reading, 1960.Google Scholar
  9. [156]
    A. Romano, E. S. Suhubi, Structure of Weiss domains in ferroelectriccrystals, Int. J. Eng. Sci., 30, 1715, 1992.MATHCrossRefMathSciNetGoogle Scholar
  10. [161]
    L. Graziano, D. Iannece, V. Lista, Branching in ferromagnetic crystals,Math. Comput. Model., 26, 107, 1997.MATHCrossRefMathSciNetGoogle Scholar
  11. [154]
    A. Romano, A macroscopic nonlinear theory of magnetothermoelasticcontinua, Arch. Rat. Mech. Anal., 65, 1, 1977.MATHCrossRefMathSciNetGoogle Scholar
  12. [159]
    A. Romano, E. S. Suhubi, Structure of Weiss domains in elastic ferroelectriccrystals, Int. J. Eng. Sci., 32, 1925, 1994.MATHCrossRefMathSciNetGoogle Scholar
  13. [141]
    G. A. Maugin, Continuum Mechanics of Electromagnetic Solids,North-Holland, Amsterdam, 1988.Google Scholar
  14. [158]
    L. Graziano, A. Romano, Micromagnetics and numerical analysis,Math. Mod. Meth. Appl. Sci., 7, 649, 1997.MATHCrossRefMathSciNetGoogle Scholar
  15. [160]
    L. Graziano, D. Iannece, A. Romano, Continua with an interface andferromagnetic crystals, Int. J. Eng. Sci., 35, 769, 1997.MATHCrossRefMathSciNetGoogle Scholar
  16. [140]
    T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectricity, Gordon and Breach, New York, 1976.Google Scholar
  17. [138]
    W. Heisenberg, On the theory of ferromagnetism, Z. Phys., 49, 619, 1928.CrossRefGoogle Scholar
  18. [155]
    S. Chikazumi, S. H. Charap, Physics of Magnetism, Wiley, New York,1964.Google Scholar
  19. [144]
    C. Kittel, Theory of the structure of ferromagnetic domains in filmsand small particles, Phys. Rev., 70, 965, 1946.CrossRefGoogle Scholar
  20. [137]
    H. Barkhausen, Two phenomena uncovered with the help of the newamplifiers, Z. Phys., 20, 401, 1919.Google Scholar
  21. [153]
    M. Rascle, PDE’s and Phase Transitions (Lecture Notes in Physics),Springer, Berlin, 1991.Google Scholar
  22. [139]
    F. Bloch, Theory of the exchange problem and of residual ferromagnetism,Z. Phys., 74, 295, 1932.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations