Phase Equilibrium

  • Antonio Romano
  • Addolorata Marasco
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter we analyze some phase equilibrium problems using the model of a continuous system with an interface, which we explored in the previous chapter. We consider a system S consisting of two phases (that fill the regions C 1 and C 2) and an interface Σ. The body force b is assumed to derive from a potential energy U(x), so that b = −∇U.


Phase Equilibrium Internal Point Total Free Energy Pressure Jump Total Surface Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. [92]
    J. F. Taylor, Constructing crystalline minimal surfaces, Ann. Math.Stud., 105, 271, 1983.Google Scholar
  2. [78]
    A. Romano, Thermomechnics of Phase Transitions in Classical Field Theories, World Scientific, Singapore, 1993.Google Scholar
  3. [97]
    A. Romano, E. S. Suhubi, On Wulff’s law about equilibrium configurationsof crystals, Int. J. Eng. Sci., 27, 1135, 1989.MATHCrossRefGoogle Scholar
  4. [86]
    J. Gibbs, Collected Works, Longamanus Green and Co., New York,1928.MATHGoogle Scholar
  5. [88]
    L. Landau, Collected Papers, Gordon and Breach, New York, 1967.Google Scholar
  6. [87]
    G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und derAuflosung der Kristallflachen, Z. Kryst. Miner., 34, 449, 1901.Google Scholar
  7. [84]
    D. Iannece, A. Romano, D. Starita, The Gibbs principle for the equilibriumof systems with two simple or composed phases, Meccanica, 25, 3, 1990.MATHCrossRefMathSciNetGoogle Scholar
  8. [83]
    A. Pippard, Elements of Classical Thermodynamics, Cambridge UniversityPress, Cambridge, 1964.Google Scholar
  9. [80]
    M. M. Abbot, H. Van Ness, Thermodynamics, McGraw–Hill, NewYork, 1976.Google Scholar
  10. [100]
    D. Iannece, A. Romano, On the mathematical modelling of crystalgrowth in a binary nonreacting mixture,Math. Mod. Meth. Appl. Sci., 3, 485, 1993.MATHCrossRefMathSciNetGoogle Scholar
  11. [93]
    D. G. Edelen, N. Laws, Nonlocal continuum mechanics, Arch. Rat.Mech. Anal., 43, 36, 1971.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations