Continuous System with a Nonmaterial Interface

  • Antonio Romano
  • Addolorata Marasco
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter, we propose a macroscopic model of phase transitions. It is essential to note that any macroscopic model of these phenomena does not describe why a phase transition takes place nor the modifications it produces in the matter at a microscopic level. It is only able to describe how it takes place.


Continuous System Jump Condition Macroscopic Model Local Equation Singular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [79]
    L. Graziano, A. Marasco, Balance laws for continua with an interfacededuced from multiphase continuous model with a transition layer, Int. J. Eng. Sci., 39, 873, 2001.CrossRefMathSciNetGoogle Scholar
  2. [73]
    K. Hutter, K. D. Jönk, Continuum Methods of Physical Modeling,Springer, Berlin, 2004.MATHGoogle Scholar
  3. [78]
    A. Romano, Thermomechnics of Phase Transitions in Classical Field Theories, World Scientific, Singapore, 1993.Google Scholar
  4. [16]
    A. Romano, R. Lancellotta, A. Marasco, Continuum Mechanics Using Mathematica® : Fundamentals, Methods, and Applications, Birkhäuser, Boston, 2005.Google Scholar
  5. [71]
    D. Korteweg, Sur la forme que permet les équations du movement desfluids si l’on tien compte des force capillares consées par variations dedensité considérable mains continues et sur la theorie de la capillarité, Arch. Neder. Sci. Ex. Nat., 6, 2, 1901.Google Scholar
  6. [77]
    A. Marasco, A. Romano, Balance laws in charged continuous systemswith an interface, Math. Mod. Meth. Appl. Sci., 12, 77, 2002MATHCrossRefMathSciNetGoogle Scholar
  7. [75]
    F. Dell’Isola, A. Romano, On the derivation of thermomechanical balanceequations for continuous systems with a nonmaterial interface,Int. J. Eng. Sci., 25, 1459, 1987.MATHCrossRefMathSciNetGoogle Scholar
  8. [72]
    J. Serrin, Phase transitions and interfacial layers for van der Waalsfluids, Arch. Rat. Mech. Anal., 13, 169, 1988.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations