Advertisement

Relativistic Continuous Systems

  • Antonio Romano
  • Addolorata Marasco
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

In this section, for the reader’s convenience, we briefly recall the physical foundations upon which special relativity is built. This introduction will be useful when we present relativistic continuum mechanics.

The wave character of the propagation of light was established during the eighteenth century, when scientists were convinced that all physical phenomena could be described by mechanical models. Consequently, it appeared natural to the researchers of that time to assume that empty space is filled with an isotropic and transparent medium, the ether, which supports light waves. This hypothesis seemed to be confirmed by the fact that forces acting on charges and currents could be evaluated by assuming that electromagnetic fields generate a deformation state in the ether, which is described by the Maxwell stress tensor.

Keywords

Rest Frame Inertial Frame Lorentz Transformation Energy Tensor Galilean Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. [176]
    G. Lianis, The general form of constitutive equations in relativisticphysics, Nuovo Cimento B, 14, 57, 1973.CrossRefMathSciNetGoogle Scholar
  2. [181]
    W. Pauli, Teoria della Relativitá, Boringhieri, Torino, 1958.Google Scholar
  3. [168]
    A. Romano, M. Padula, Su un’assiomatica per l’elettrodinamica relativisticadi un sistema continuo con spin, Acc. Sci. Fis. Mat. Soc. Sci. Lett. Art. Napoli, 41, 244, 1973.MathSciNetGoogle Scholar
  4. [170]
    A. Romano, On the relativistic thermodynamics of a continuous systemin electromagnetic fields, Meccanica, 9, 244, 1974.MATHCrossRefMathSciNetGoogle Scholar
  5. [174]
    G. Maugin, Sur quelques applications du principe d’indifferencematérielle en relativité gene d’indifference matérielle en relativité, C. R. Acad. Sci. Paris A, 275, 349, 1972.MathSciNetGoogle Scholar
  6. [191]
    G. Marx, G. Gyorgyi, Über den energie-impuls-tensor des elektromagnetischenfeldes in dielektrika, Ann. Phys., 16, 241, 1955.MATHCrossRefMathSciNetGoogle Scholar
  7. [175]
    G. Lianis, The formulation of constitutive equations in continuumrelativistic physics, Nuovo Cimento B, 66, 239, 1970.CrossRefMathSciNetGoogle Scholar
  8. [173]
    G. Maugin, Sur una possible définition du principe d’indifferencematérielle en relativité géneral, C. R. Acad. Sci. Paris A, 275, 319, 1972.MathSciNetGoogle Scholar
  9. [166]
    A. Romano, Sul tensore impulso-energia di un sistema continuo noncarico o carico, Ann. Mat. Pura Appl. IV, 95, 211, 1973.MATHCrossRefMathSciNetGoogle Scholar
  10. [183]
    C. Truesdell, R. Toupin, The Classical Field Theories (Encyclopedia of Physics Vol. III/1), Springer, Berlin, 1960.Google Scholar
  11. [180]
    R. Esposito, Sull’equivalenza di alcune leggi relativistiche di trasformazioneconcernenti grandezze termodinamiche globali, Rend. Acc. Sci. Fis. Mat. Napoli, 43, 111, 1976.MathSciNetGoogle Scholar
  12. [193]
    A. Romano, Proof that the formulations of the electrodynamics ofmoving bodies are equivalent, Arch. Rat. Mech. Anal., 68, 283, 1978.CrossRefMathSciNetGoogle Scholar
  13. [165]
    C. Möller, The Theory of Relativity, Clarendon, Oxford, 1972.Google Scholar
  14. [164]
    V. A. Fock, The Theory of Space, Time and Gravitation, Pergamon,London, 1969.Google Scholar
  15. [172]
    D. Bogy, D. Naghdi, On heat conduction and wave propagation inrigid solids, Math. Phys., 11, 917, 1970.MATHCrossRefGoogle Scholar
  16. [177]
    A. Bressan, On relativistic thermodynamics, Nuovo Cimento B, 48, 201, 1967.CrossRefGoogle Scholar
  17. [178]
    L. Bragg, On relativistic worldlines and motions and on non-sentientresponse, Arch. Rat. Mech. Anal., 18, 127, 1965.MATHCrossRefMathSciNetGoogle Scholar
  18. [16]
    A. Romano, R. Lancellotta, A. Marasco, Continuum Mechanics Using Mathematica® : Fundamentals, Methods, and Applications, Birkhäuser, Boston, 2005.Google Scholar
  19. [179]
    L. Söderholm, A principle of objectivity for relativistic continuummechanics, Arch. Rat. Mech. Anal., 39, 89, 1971.CrossRefGoogle Scholar
  20. [182]
    A. S. Eddington, The Mathematical Theory of Relativity, CambridgeUniversity Press, Cambridge, 1923.MATHGoogle Scholar
  21. [171]
    P. M. Quan, Sur une théorie relativiste des fluides thermodinamiques,Ann. Mat. Pura Appl. IV, 38, 181, 1955.Google Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations