Skip to main content

Relativistic Continuous Systems

  • Chapter
  • First Online:
Continuum Mechanics

Abstract

In this section, for the reader’s convenience, we briefly recall the physical foundations upon which special relativity is built. This introduction will be useful when we present relativistic continuum mechanics.

The wave character of the propagation of light was established during the eighteenth century, when scientists were convinced that all physical phenomena could be described by mechanical models. Consequently, it appeared natural to the researchers of that time to assume that empty space is filled with an isotropic and transparent medium, the ether, which supports light waves. This hypothesis seemed to be confirmed by the fact that forces acting on charges and currents could be evaluated by assuming that electromagnetic fields generate a deformation state in the ether, which is described by the Maxwell stress tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. G. Lianis, The general form of constitutive equations in relativisticphysics, Nuovo Cimento B, 14, 57, 1973.

    Article  MathSciNet  Google Scholar 

  2. W. Pauli, Teoria della Relativitá, Boringhieri, Torino, 1958.

    Google Scholar 

  3. A. Romano, M. Padula, Su un’assiomatica per l’elettrodinamica relativisticadi un sistema continuo con spin, Acc. Sci. Fis. Mat. Soc. Sci. Lett. Art. Napoli, 41, 244, 1973.

    MathSciNet  Google Scholar 

  4. A. Romano, On the relativistic thermodynamics of a continuous systemin electromagnetic fields, Meccanica, 9, 244, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Maugin, Sur quelques applications du principe d’indifferencematérielle en relativité gene d’indifference matérielle en relativité, C. R. Acad. Sci. Paris A, 275, 349, 1972.

    MathSciNet  Google Scholar 

  6. G. Marx, G. Gyorgyi, Über den energie-impuls-tensor des elektromagnetischenfeldes in dielektrika, Ann. Phys., 16, 241, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Lianis, The formulation of constitutive equations in continuumrelativistic physics, Nuovo Cimento B, 66, 239, 1970.

    Article  MathSciNet  Google Scholar 

  8. G. Maugin, Sur una possible définition du principe d’indifferencematérielle en relativité géneral, C. R. Acad. Sci. Paris A, 275, 319, 1972.

    MathSciNet  Google Scholar 

  9. A. Romano, Sul tensore impulso-energia di un sistema continuo noncarico o carico, Ann. Mat. Pura Appl. IV, 95, 211, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Truesdell, R. Toupin, The Classical Field Theories (Encyclopedia of Physics Vol. III/1), Springer, Berlin, 1960.

    Google Scholar 

  11. R. Esposito, Sull’equivalenza di alcune leggi relativistiche di trasformazioneconcernenti grandezze termodinamiche globali, Rend. Acc. Sci. Fis. Mat. Napoli, 43, 111, 1976.

    MathSciNet  Google Scholar 

  12. A. Romano, Proof that the formulations of the electrodynamics ofmoving bodies are equivalent, Arch. Rat. Mech. Anal., 68, 283, 1978.

    Article  MathSciNet  Google Scholar 

  13. C. Möller, The Theory of Relativity, Clarendon, Oxford, 1972.

    Google Scholar 

  14. V. A. Fock, The Theory of Space, Time and Gravitation, Pergamon,London, 1969.

    Google Scholar 

  15. D. Bogy, D. Naghdi, On heat conduction and wave propagation inrigid solids, Math. Phys., 11, 917, 1970.

    Article  MATH  Google Scholar 

  16. A. Bressan, On relativistic thermodynamics, Nuovo Cimento B, 48, 201, 1967.

    Article  Google Scholar 

  17. L. Bragg, On relativistic worldlines and motions and on non-sentientresponse, Arch. Rat. Mech. Anal., 18, 127, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Romano, R. Lancellotta, A. Marasco, Continuum Mechanics Using Mathematica® : Fundamentals, Methods, and Applications, Birkhäuser, Boston, 2005.

    Google Scholar 

  19. L. Söderholm, A principle of objectivity for relativistic continuummechanics, Arch. Rat. Mech. Anal., 39, 89, 1971.

    Article  Google Scholar 

  20. A. S. Eddington, The Mathematical Theory of Relativity, CambridgeUniversity Press, Cambridge, 1923.

    MATH  Google Scholar 

  21. P. M. Quan, Sur une théorie relativiste des fluides thermodinamiques,Ann. Mat. Pura Appl. IV, 38, 181, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Romano .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Romano, A., Marasco, A. (2010). Relativistic Continuous Systems. In: Continuum Mechanics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4870-1_10

Download citation

Publish with us

Policies and ethics