Nonlinear Elasticity

  • Antonio Romano
  • Addolorata Marasco
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this chapter we focus on the basics of nonlinear elasticity in order to show its interesting mathematical and physical aspects. Readers who are interested in delving deeper into this subject should refer to the many existing books on it (see, for instance, [1]–[15]).


Boundary Value Problem Linear Elasticity Nonlinear Elasticity Homogeneous Deformation Cauchy Stress Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. [29]
    G. Capriz, P. Podio-Guidugli, A generalization of Signorini’s perturbation method suggested by two problems of Grioli, Rend. Sem. Mat. Univ. Padova, 68, 149, 1982.MATHMathSciNetGoogle Scholar
  2. [20]
    J. L. Ericksen, Deformation possible in every compressible, isotropic, perfectly elastic material, J. Math. Phys., 34(2), July, 1955.Google Scholar
  3. [17]
    L. R. G. Treloar, The Physics of Rubber Elasticity, Second Edition, Oxford University Press, Oxford, 1958.Google Scholar
  4. [57]
    A. Marasco, Second-order effects on the wave propagation in elastic,isotropic, incompressible, and homogeneous media, Int. J. Eng. Sci., 47, 499, 2009.CrossRefMathSciNetGoogle Scholar
  5. [37]
    G. L. Iaccarino, A. Marasco, A. Romano, Signorini’s method for live loads and second-order effects, Int. J. Eng. Sci., 44, 312, 2006.CrossRefMathSciNetGoogle Scholar
  6. [24]
    W. Van Buren, On the Existence and Uniqueness of Solutions to Boundary Value Problems in Finite Elasticity, Thesis (Report 68-107 MEKMARI), Carnegie Mellon University, Pittsburgh, 1968.Google Scholar
  7. [51]
    J. J. Rushchitsky, C. Cattani, Similarities and differences in the description of the evolution of quadratically nonlinear hyperelastic plane waves by Murnaghan and Signorini potentials, Prikl. Mekh., 42, 997, 2006. (in Russian; translation in Int. Appl. Mech., 42, 41, 2006).Google Scholar
  8. [26]
    F. Stoppelli, Sulla sviluppabilità in serie di potenze di un parametro delle soluzioni delle equazioni dell’elastostatica isoterma, Ric. Mat., 4, 58, 1955.MATHMathSciNetGoogle Scholar
  9. [56]
    A. Marasco, On the first-order speeds in any directions of accelerationwaves in prestressed second-order isotropic, compressible, andhomogeneous materials, Math. Comput. Modelling, 49, 1644, 2009.MATHCrossRefMathSciNetGoogle Scholar
  10. [1]
    A. E. Green, W. Zerna, Theoretical Elasticity, Clarendon, Oxford, 1954.MATHGoogle Scholar
  11. [15]
    C. Truesdell, R. A. Toupin, In: S. Flügge (ed), The Classical Field Theories, The Encyclopedia of Physics Vol. 3/I, Springer, Berlin, 1960.Google Scholar
  12. [22]
    A. Signorini, Trasformazioni termoelastiche finite, Memoria 2a, Ann. Mat. Pura Appl. IV, 30, 1, 1949.MATHCrossRefMathSciNetGoogle Scholar
  13. [38]
    J. L. Ericksen, On the propagation of waves in isotropic incompressible perfectly elastic materials, J. Rat. Mech. Anal., 2, 329, 1953.MathSciNetGoogle Scholar
  14. [58]
    A. C. Eringen, C. Kafadar, Micropolar media, I: The classical theory,Int. J. Eng. Sci., 9, 271, 1971.CrossRefGoogle Scholar
  15. [19]
    M. Mooney, A theory of large elastic deformations, J. Appl. Phys., 11, 582, 1940.CrossRefGoogle Scholar
  16. [30]
    T. Valent, Boundary value problems of finite elasticity, Springer Tracts in Natural Philosophy Vol. 31, Springer, Berlin, 1988.Google Scholar
  17. [4]
    C. Truesdell, W. Noll, The Nonlinear Field Theories of Mechanics, Handbuch der Physik Vol. III/3, Springer, Berlin, 1965.Google Scholar
  18. [53]
    W. Domanski, T. Jablonski, On resonances of nonlinear elastic waves in a cubic crystal, Arch. Mech., 53, 91, 2001.MATHGoogle Scholar
  19. [44]
    M. Major, Velocity of acceleration wave propagating in hyperelastic Zahorski and Mooney–Rivlin materials, J. Theor. Appl. Mech., 43, 777, 2005.Google Scholar
  20. [18]
    L. R. G. Treloar, The elasticity of a network of long chain molecules, Trans. Faraday Soc., 39, 241, 1943.CrossRefGoogle Scholar
  21. [21]
    A. Signorini, Trasformazioni termoelastiche finite: elasticità di 2 grado, Atti 2 Congresso Un. Mat. Ital., 1942.Google Scholar
  22. [16]
    A. Romano, R. Lancellotta, A. Marasco, Continuum Mechanics Using Mathematica® : Fundamentals, Methods, and Applications, Birkhäuser, Boston, 2005.Google Scholar
  23. [31]
    K. A. Lindsay, The second-order deformation of an incompressible isotropic slab under torsion, Quart. J. Mech. Appl. Math., 45, 529, 1992.MATHCrossRefMathSciNetGoogle Scholar
  24. [54]
    W. Domanski,Weakly nonlinear elastic plane waves in a cubic crystal, Contemp. Math., 255, 45, 2000.MathSciNetGoogle Scholar
  25. [23]
    A. Signorini, Trasformazioni termoelastiche finite, Memoria 3 a, Ann. Mat. Pura Appl. IV, 39, 147, 1955.MATHCrossRefMathSciNetGoogle Scholar
  26. [2]
    C. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1, Second Edition, Academic, New York, 1991.MATHGoogle Scholar
  27. [3]
    C. C. Wang, C. Truesdell, Introduction to Rational Elasticity, Noordhoff International Publishing, Leyden, 1973.MATHGoogle Scholar
  28. [55]
    A. Marasco, A. Romano, On the acceleration waves in second-order elastic, isotropic, compressible, and homogeneous materials, Math. Comput. Modelling, 49, 1504, 2009.MATHCrossRefMathSciNetGoogle Scholar
  29. [28]
    G. Capriz, P. Podio-Guidugli, Duality and stability questions for the linearized traction problem with live loads in elasticity, in: F. H. Schroeder (ed), Stability in the Mechanics of Continua, Springer, Berlin, 1982.Google Scholar

Copyright information

© Birkhäuser Boston 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations