Skip to main content

A Generalization of the Rudin–Carleson Theorem

  • Chapter
  • First Online:

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 78))

Summary

We prove a generalization of the Rudin–Carleson theorem for homogeneous solutions of locally solvable real analytic vector fields.

2000 AMS Subject Classification: Primary: 35F15, 35B30, Secondary: 42A38, 30E25

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Baouendi and F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math., 113 (1981), 387–421.

    Article  MathSciNet  Google Scholar 

  2. S. Berhanu, P. Cordaro, and J. Hounie, An introduction to involutive structures, Cambridge University Press, 2008.

    Google Scholar 

  3. S. Berhanu and J. Hounie, A Rudin–Carleson theorem for planar vector fields, Math. Annalen, to appear.

    Google Scholar 

  4. S. Berhanu and J. Hounie, An F. and M. Riesz theorem for planar vector fields, Math. Ann., 320 (2001), 463–485.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Berhanu and A. Meziani, Global properties of a class of planar vector fields of infinite type, Commun. Partial Differential Equations, 22 (1997), 99–142.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Bharali, On peak-interpolation manifolds for A(Ω) for convex domains in Cn, Trans. AMS, 356 (2004), 4811–4827.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Bishop, A general Rudin–Carleson theorem, Proc. AMS, 13 (1962), 140–143.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Carleson, Representations of continuous functions, Math. Z., 66 (1957), 447–451.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Doss, Elementary proof of the Rudin-Carleson and the F. and M. Riesz theorems, Proc. AMS, 82 (1981), 599–602.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Farkas and I. Kra, Riemann Surfaces, 2nd ed., Springer Verlag, 1991.

    Google Scholar 

  11. T. Gamelin, Uniform algebras, 2nd ed., Chelsea Pub. Co., 1984.

    Google Scholar 

  12. A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., 43 (1976), 323–348.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Commun. Pure Appl. Math., 16 (1963), 331–351.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Oberlin, A Rudin–Carleson theorem for uniformly convergent Taylor series, Michigan Math. J., 27 (1980), 309–313.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Rudin, Boundary values of continuous analytic functions, Proc. AMS, 7 (1956), 808–811.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Rudin, Peak-interpolation sets of class C 1, Pac. J. Math., 75 (1978), 267–279.

    MATH  MathSciNet  Google Scholar 

  17. H. J. Sussmann, Orbits of families of vector fields and integrability of istributions, Trans. AMS, 180 (1973), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, Centre Math. Ecole Polytechnique, Palaiseau, France, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiferaw Berhanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Berhanu, S., Hounie, J. (2009). A Generalization of the Rudin–Carleson Theorem. In: Bove, A., Del Santo, D., Murthy, M. (eds) Advances in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 78. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4861-9_3

Download citation

Publish with us

Policies and ethics