Skip to main content

Valuations on Distributive Lattices III

  • Chapter
Classic Papers in Combinatorics

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 2184 Accesses

Abstract

In Parts I and II [Arch. Math. 24, 230–239, 337–345 (1973)] we were principally interested in combinatorial applications of the valuation ring of a distributive lattice. We now show how this ring provides a natural setting for some elementary results in measure theory as well as some classical results on representations of distributive lattices. Specifically, in the valuation ring V(L) of a distributive lattice L it is easy to identify various extensions of L as well as prime ideals of L and so arrive at some theorems of Pettis, Birkhoff, and Stone. For any faithful representation of L as a lattice of sets the extension of V (L) by real (or complex) scalars is naturally isomorphic to the algebra of simple functions, and the sup norm on the functions comes from an intrinsic norm on VR(L). The Stone space of L corresponds to the spectrum of VR(L) with the Zariski topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Balbes, Projective and injective distributive lattices. Pacific J. Math. 21, 405–420 (1967).

    MATH  MathSciNet  Google Scholar 

  2. G. Birkhoff, Lattice Theory. Providence 1967.

    Google Scholar 

  3. H. Crapo and G.-C. Rota, Combinatorial Geometries. Cambridge 1970.

    Google Scholar 

  4. R. L. Davis, Order Algebras. Bull. Amer. Math. Soe. 76, 83-87 (1970).

    Article  MATH  Google Scholar 

  5. J. Folkman, The homology groups of a lattice. J. Math, and Mech. 15, 631–636 (1966).

    MATH  MathSciNet  Google Scholar 

  6. L. Geissinger and W. Graves, The category of complete algebraic lattices. J. Combinatorial Th. (A) 13, 332-338 (1972).

    Article  MATH  Google Scholar 

  7. G. Gratzer, Lattice Theory. San Francisco 1971.

    Google Scholar 

  8. C. Greene, On the Mobius Algebra of a Partially Ordered Set. Proc. Conf. on Mobius Algebras, University of Waterloo 1971.

    Google Scholar 

  9. P. R. Halmos, Measure Theory. Princeton 1950.

    Google Scholar 

  10. P. Hilton and S. Wylie, Homology Theory. Cambridge 1960.

    Google Scholar 

  11. V. Klee, The Euler characteristic in combinatorial geometry. Amer. Math. Monthly 70, 119-127 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Horn and A. Tarski, Measures in Boolean algebras. Trans. Amer. Math. Soc. 64, 467 -497 (1948).

    MathSciNet  Google Scholar 

  13. R. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math. 91, 75-94 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. M. MacNeille, Partially ordered sets. Trans. Amer. Math. Soc. 42, 416–460 (1937).

    MATH  MathSciNet  Google Scholar 

  15. B. Pettis, Remarks on the extension of lattice functionals. Bull. Amer. Math. Soc. 54, 471 (1948).

    Google Scholar 

  16. B. Pettis, On the extension of measures. Ann. of Math. 54, 186–197 (1951).

    Article  MathSciNet  Google Scholar 

  17. H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. Warsaw 1963.

    Google Scholar 

  18. G.-C. Rota, On the foundations of combinatorial theory. I. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 2, 340-368 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  19. G.-C. Rota, On the combinatorics of the Euler characteristic. In: Studies in Pure Math., pp. 221–233. London 1971.

    Google Scholar 

  20. L. Solomon, The Burnside algebra of a finite group. J. Combinatorial Th. 2, 603–615 (1967).

    Article  MATH  Google Scholar 

  21. E. Spanier, Algebraic Topology. New York 1966.

    Google Scholar 

  22. M. H. Stone, Topological representations of distributive lattices and Brouwerian logics. Casopis Math. Fys. 67, 1-25 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Geissinger, L. (2009). Valuations on Distributive Lattices III. In: Gessel, I., Rota, GC. (eds) Classic Papers in Combinatorics. Modern Birkhäuser Classics. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4842-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4842-8_39

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4841-1

  • Online ISBN: 978-0-8176-4842-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics