Advertisement

On the Foundations of Combinatorial Theory

I. Theory of Möbius Functions
  • Gian-Carlo Rota
Part of the Modern Birkhäuser Classics book series (MBC)

Abstract

One of the most useful principles of enumeration in discrete probability and combinatorial theory is the celebrated principle of·inclusion-exclusion (ef. Feller*, FrÉchet, Riordan, Ryser). When skillfully applied, this principle has yielded the solution to many a combinatorial problem. Its mathematical foundations were thoroughly investigated not long ago in a monograph by FrÉchet, and it might at first appear that, after such exhaustive work, little else could be said on the subject.

Keywords

Zeta Function Boolean Algebra Euler Characteristic Betti Number Combinatorial Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auslander. L., and H. M. Trent: Incidence matrices and linear graphs. J. Math. Mech. 8. 827–835 (1959).MATHMathSciNetGoogle Scholar
  2. Bell, E. T.: Algebraic Arithmetic. New York: Amer. Math. Soc. (1927),MATHGoogle Scholar
  3. Bell, E. T.: Exponential polynomials. Ann. of Math., II. Ser. 35, 258–277 (1934).CrossRefGoogle Scholar
  4. Berge, C.: Théorie des graphes et ses applications. Paris: Dounod 1958.Google Scholar
  5. Birkhoff, Garrett: Lattice Theory, third preliminary edition. Harvard University. 1963.Google Scholar
  6. Birkhoff, Garrett: Lattice Theory, revised edition. American Mathematical Society, 1948.Google Scholar
  7. Birkhoff, G. D.: A determinant formula for the number of ways of coloring a map. Ann. of Math., II. Ser. 14. 42–46 (1913).CrossRefGoogle Scholar
  8. Birkhoff, G. D., and D. C. Lewis: Chromatic polynomials. Trans. Amer. math. Soc. 60, 355–451 (1946).MATHMathSciNetGoogle Scholar
  9. Bletcher, M. N., and G. B. Preston: Abstract linear dependence relations. Publ. Math., Debrecen 8, 55–63 (1961).MathSciNetGoogle Scholar
  10. Bougayev, N. V.: Theory of numerical derivatives. Moscow, 1870–1873, pp. 1–222.Google Scholar
  11. Bruijn, N. G. DE: Generalization of Polya’s fundamental theorem in enumerative combinatorial analysis. Indagationes math. 21, 59–69 (1959).Google Scholar
  12. Chung, K.-L., and L. T. C. Hsu: A combinatorial formula with its application to the theory of probability of arbitrary events. Ann. math. Statistics 16, 91-95 (1945).MATHCrossRefMathSciNetGoogle Scholar
  13. Dedekind, R.: Gesammelte Mathematische Werke, volls. I–II–111. Hamburg: Deutsche Math. Verein. (1930).Google Scholar
  14. Delsarte, S.: Fonctions de Möbius sur les groupes abéliens finis. Ann. of Math., II. Ser. 49, 600–609 (1948).CrossRefMathSciNetGoogle Scholar
  15. Dilworth, R. P.: Proof of a conjecture on finite modular lattices. Ann. of Math.. II. Ser. 60, 359–364 (1954).CrossRefMathSciNetGoogle Scholar
  16. Dirac, G. A.: On the four-color conjecture. Proc. London math. Society, III. Ser. 13, 193 to 218 (1963).MATHCrossRefMathSciNetGoogle Scholar
  17. Dowker, C. H.: Homology groups of relations. Ann. of Math., II. Ser. 56, 84–95 (1952).CrossRefMathSciNetGoogle Scholar
  18. Dubreil-Jacotin, M.-L., L. Lesieur et R. Croisot: Leçons sur la théorie des treilles des structures algebriques ordonnées et des treilles géometriques. Paris: Gauthier-Villars 1953.Google Scholar
  19. Eilenberg. S., and N. Steenrod: Foundations of algebraic topology. Princeton: University Press 1952.MATHGoogle Scholar
  20. Fary, I.: On straight-line representation of planar graphs. Acta Sei. math. Szeged 11. 229–233 (1948).MathSciNetGoogle Scholar
  21. Feller, W.: An introduction to probability theory and its applications, second edition. New York: Wiley 1960.Google Scholar
  22. Franklin, P.: The four-color problem. Amer. J. Math. 44, 225–236 (1922).MATHCrossRefMathSciNetGoogle Scholar
  23. Fréchet, M.: Les probabilités associées à un système d’évenements compatibles et dépendants. Actualitées scientifiques et industrielles, nos. 859 et 942. Paris: Hermann 1940 et 1943.Google Scholar
  24. Frontera Marqués, B.: Una funcio´n numériea en los reticulos finitos que se anula para Ion retículos reducibles. Actas de la 2a, Reunión de matemáticos españoles. Zaragoza 103- III 1962.Google Scholar
  25. Frucht, R., and G.-C. Rota: La funeión de Möbius para el retículo di particiones de un conjunto finito. To appear in Scientia (Chile).Google Scholar
  26. Goldberg, K., M.S. Green and R. E. Nettleton: Dense subgraphs and connectivity. Canadian J. Math. 11 (1959).Google Scholar
  27. Golomb. S. W.: A mathematical theory of discrete classification. Fourth Symposium in Information Theory, London, 1961.Google Scholar
  28. Green, M. S., and R. E. Nettleton: Möbius function on the lattice of dense subgraphs. J. Res. nat. Bur. Standards 64B, 41–47 (1962).MathSciNetGoogle Scholar
  29. Green, M. S., and R. E. Nettleton: Expression in terms of modular distribution functions for the entropy density in an infinite system. J. Chemical Physisc 29, 1365-1370 (1958).CrossRefGoogle Scholar
  30. Hadwiger, H.: Eulers Charakteristik und kombinatorische Geometrie. J. reine angew. Math. 194, 101-110 (1955).MATHMathSciNetGoogle Scholar
  31. Hall, Philip: A contribution to the theory of groups of prime power order. Proc. London math. Soc., II. Ser. 36, 39–95 (1932).Google Scholar
  32. Hall, Philip: The Eulerian functions of a group. Quart. J. Math. Oxford Ser. 134–151, 1936.Google Scholar
  33. Harary. F.: Unsolved problems in the enumeration of graphs. Publ. math. Inst. Hungar Acad. Sci. 5, 63–95 (1960).MATHGoogle Scholar
  34. Hardy, G. H.: Ramanujan. Cambridge: University Press 1940.Google Scholar
  35. Hardy, G. H., and E. M. Wright: An introduction to the theory of numbers, Oxford: University Press 1954.MATHGoogle Scholar
  36. Hartmants, J.: Lattice theory of generalized partitions. Canadian J. Math. II. 97–106 (1959).Google Scholar
  37. Hille. E.: The inversion problems of Möbius. Duke math. J. 3, 549–568 (1937).CrossRefMathSciNetGoogle Scholar
  38. Hsu, L. T. C.: Abstract theory of inversion of iterated summation. Duke math. J. 14. 465 to 473 (1947).MATHCrossRefMathSciNetGoogle Scholar
  39. Hsu, L. T. C.: On Romanov’s device of orthogonalization. Sci. Rep. Nat. Tsing Hua Univ. 5, 1–12 (1948).MathSciNetGoogle Scholar
  40. Hsu, L. T. C.: Note on an abstract inversion principle. Proe. Edinburgh math. Soc. (2) 9, 71–73 (1954).Google Scholar
  41. Jackson, F. H.: Series connected with the enumeration of partitions. Proc. London math. Soc., II. Ser. 1, 63—88 (1904).Google Scholar
  42. Jackson, F. H.: The q-form of Taylor’s theorem. Messenger of Mathematics 38. 57—61 (1909).Google Scholar
  43. Jónsson, B.: Lattice-theoretic approach to protective and affine geometry. Symposium on the Axiomatic Method. Amsterdam, North-Holland Publishing Company, 1959, 188 — 205.Google Scholar
  44. Jónsson, B. and A. Tarski: Direct decomposition of finite algebraic systems. Notre Dame Mathematical lectures, no. 5. Indiana: Notre Dame 1947.Google Scholar
  45. Kac. M., and J. C. Ward: A combinatorial solution of the two-dimensional Ising model. Phvs. Review 88, 1332—1337 (1952).MATHCrossRefGoogle Scholar
  46. Kaplanski, I., and J. Riordan: The probleme des menages. Scripta math. 12, 113—124 (1946).MathSciNetGoogle Scholar
  47. Klee, V.: The Kuler characteristic in combinatorial geometry. Amer. math. Monthly 70, 119—127 (1963).MATHCrossRefMathSciNetGoogle Scholar
  48. Lazarson, T.: The representation problem for independence functions. J. London math. Soc. 88, 21-25 (1958).CrossRefMathSciNetGoogle Scholar
  49. MacLane, S.: A lattice formulation of transcendence degrees and p-bases. Duke math. J. 4, 455-468 (1938).MATHCrossRefMathSciNetGoogle Scholar
  50. MacMillan, B.: Absolutely monotone functions. Ann. of Math., II. Ser. 60, 467-501 (1954).CrossRefGoogle Scholar
  51. Möbius, A. F.: Über eine besondere Art von Umkehrung der Reihen. J. reine angew. Math. 9, 105-123 (1832).Google Scholar
  52. Ore, O.: Theory of graphs. Providence: American Mathematical Society 1962.MATHGoogle Scholar
  53. Polya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen lind chemische Verbindungen. Acta math. 68, 145-253 (1937).MATHCrossRefGoogle Scholar
  54. Rado, R.: Note on independence functions. Proc. London math. Soc, III. Ser. 7, 300–320 (1957).Google Scholar
  55. Read, R. C.: The enumeration of locally restricted graphs, I. J. London math. Soc. 34, 417 to 436 (1959).MATHCrossRefMathSciNetGoogle Scholar
  56. Redfield, J. H.: The theory of group-reduced distributions. Amer. J. Math. 49, 433-455 (1927).MATHCrossRefMathSciNetGoogle Scholar
  57. Revuz. André: Fonctions croissantes et mesures sur les espaces topologiques ordonnés. Ann. Inst. Fourier 6 187-268 (1955).Google Scholar
  58. Riordan, J.: An introduction to combinatorial analysis. New York: Wiley 1958.MATHGoogle Scholar
  59. Romanov, N. P.: On a special orthonormal system and its connection with the theory of primes. Math. Sbornik, N. S. 16, 353–364 (1945).Google Scholar
  60. Rota, G.-C,: Combinatorial theory and Möbius functions. To appear in Amer. math. Monthly.Google Scholar
  61. Rota, G.-C,: The number of partitions of a set. To appear in Amer. math. Monthly.Google Scholar
  62. Ryser, H. J.: Combinatorial Mathematics. Buffalo: Mathematical Association of America 1963.MATHGoogle Scholar
  63. Schützenberoer. M. P.: Contribution aux applications statistiques de la théorie de l’infor-mation. Publ. Inst. Stat.. Univ. Paris, 3, 5–117 (1954).Google Scholar
  64. Tarski, A.: Ordinal algebras. Amsterdam: North-Holland Publishing Company 1956.MATHGoogle Scholar
  65. Touchard. J.: Sur un probléme de permutations. C. r. Acad. Sci., Paris, 198, 631—633 (1934).Google Scholar
  66. Tutte, W. T.: A contribution to the theory of chromatic polynomials. Canadian J. Math. 6, 80–91 (1953).MathSciNetGoogle Scholar
  67. A class of Ahcliiin group. Canadian. J. Math. 8. 13–28 (1956).Google Scholar
  68. A hoinotopy theorem for matroids. I. and II. Trans. Amer. math. Soc. 88, 144–144 (1958).Google Scholar
  69. Matroids and graphs. Trans. Amer. math. Soc. 90. 527–552 (1959).Google Scholar
  70. Ward. M.: The algebra of lattice functions. Duke math. J. 5, 357–371 (1939).CrossRefMathSciNetGoogle Scholar
  71. Weisner, L.: Abstract theory of inversion of finite series. Trans. Amer. math. Soc. 38, 474–484 (1935).MATHMathSciNetGoogle Scholar
  72. Weisner, L.: Some properties of prime-power groups. Trans. Amer. math. Soc. 38, 485—492 (1935).MATHMathSciNetGoogle Scholar
  73. Whitney, H.: A logical expansion in mathematics. Bull. Amer. math. Soc. 38, 572–579 (1932).CrossRefMathSciNetGoogle Scholar
  74. Whitney, H.: Characteristic functions and the algebra of logic. Ann. of Math., II. Ser. 34, 405–414 (1933).CrossRefMathSciNetGoogle Scholar
  75. Whitney, H.: The abstract properties of linear dependence. Amer. J. Math. 57, 507–533 (1935).CrossRefMathSciNetGoogle Scholar
  76. Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe. Math. Z. 73. 146–158 (1960).MATHCrossRefMathSciNetGoogle Scholar
  77. Wintner, A.: Eratosthenian Averages. Baltimore (privately printed) 1943.Google Scholar

Copyright information

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gian-Carlo Rota
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge 39USA

Personalised recommendations